加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > Linux > 正文

linux – 为什么slurm中的作业在TensorFlow脚本中无限期冻结?

发布时间:2020-12-14 01:44:07 所属栏目:Linux 来源:网络整理
导读:我使用slurm( http://slurm.schedmd.com/)工作负载管理器时遇到此错误.当我运行一些tensorflow python脚本时,有时会导致错误(附加).它似乎无法找到安装的cuda库,但我正在运行不需要GPU的脚本.因此,我发现为什么cuda会成为一个问题非常令人困惑.如果我不需要,
我使用slurm( http://slurm.schedmd.com/)工作负载管理器时遇到此错误.当我运行一些tensorflow python脚本时,有时会导致错误(附加).它似乎无法找到安装的cuda库,但我正在运行不需要GPU的脚本.因此,我发现为什么cuda会成为一个问题非常令人困惑.如果我不需要,为什么cuda安装会出现问题?

我从slurm-job_id文件中获得的唯一有用信息如下:

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:102] Couldn't open CUDA library libcudnn.so. LD_LIBRARY_PATH: /cm/shared/openmind/cuda/7.5/lib64:/cm/shared/openmind/cuda/7.5/lib
I tensorflow/stream_executor/cuda/cuda_dnn.cc:2092] Unable to load cuDNN DSO
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
E tensorflow/stream_executor/cuda/cuda_driver.cc:491] failed call to cuInit: CUDA_ERROR_NO_DEVICE
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:153] retrieving CUDA diagnostic information for host: node047
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:160] hostname: node047
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:185] libcuda reported version is: Not found: was unable to find libcuda.so DSO loaded into this program
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:347] driver version file contents: """NVRM version: NVIDIA UNIX x86_64 Kernel Module  352.63  Sat Nov  7 21:25:42 PST 2015
GCC version:  gcc version 4.8.5 20150623 (Red Hat 4.8.5-4) (GCC)
"""
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] kernel reported version is: 352.63.0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:81] No GPU devices available on machine.

我一直以为张量流不需要GPU.所以我假设最后一个错误说没有GPU不会导致错误(如果我错了,请纠正我).

我不明白为什么我需要CUDA库.我正在尝试用GPU运行我的工作,如果我的工作是CPU工作,为什么我需要cuda库?

我尝试直接登录节点并启动张量流但我没有明显的错误:

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:102] Couldn't open CUDA library libcudnn.so. LD_LIBRARY_PATH: /cm/shared/openmind/cuda/7.5/lib64:/cm/shared/openmind/cuda/7.5/lib
I tensorflow/stream_executor/cuda/cuda_dnn.cc:2092] Unable to load cuDNN DSO
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally

虽然我预计错误:

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:102] Couldn't open CUDA library libcudnn.so. LD_LIBRARY_PATH: /cm/shared/openmind/cuda/7.5/lib64:/cm/shared/openmind/cuda/7.5/lib
I tensorflow/stream_executor/cuda/cuda_dnn.cc:2092] Unable to load cuDNN DSO
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
E tensorflow/stream_executor/cuda/cuda_driver.cc:491] failed call to cuInit: CUDA_ERROR_NO_DEVICE
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:153] retrieving CUDA diagnostic information for host: node047
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:160] hostname: node047
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:185] libcuda reported version is: Not found: was unable to find libcuda.so DSO loaded into this program
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:347] driver version file contents: """NVRM version: NVIDIA UNIX x86_64 Kernel Module  352.63  Sat Nov  7 21:25:42 PST 2015
GCC version:  gcc version 4.8.5 20150623 (Red Hat 4.8.5-4) (GCC)
"""
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] kernel reported version is: 352.63.0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:81] No GPU devices available on machine.

我还在tensorflow库中发了一个正式的git问题:

https://github.com/tensorflow/tensorflow/issues/3632

解决方法

tensorflow中存在一些错误,通过批处理作业提交slurm.

目前我通过在slurm上运行srun来解决它.

在您的情况下,您还可以安装GPU版本的tensorflow并在没有GPU的计算机上运行它.这导致您的情况再次出错.

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读