用Python实例分类多项式朴素贝叶斯分类器
发布时间:2020-12-16 21:36:34 所属栏目:Python 来源:网络整理
导读:我正在寻找一个关于如何运行Multinomial Naive Bayes分类器的简单示例.我从StackOverflow中看到了这个例子: Implementing Bag-of-Words Naive-Bayes classifier in NLTK import numpy as npfrom nltk.probability import FreqDistfrom nltk.classify import
我正在寻找一个关于如何运行Multinomial Naive Bayes分类器的简单示例.我从StackOverflow中看到了这个例子:
Implementing Bag-of-Words Naive-Bayes classifier in NLTK import numpy as np from nltk.probability import FreqDist from nltk.classify import SklearnClassifier from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_selection import SelectKBest,chi2 from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline pipeline = Pipeline([('tfidf',TfidfTransformer()),('chi2',SelectKBest(chi2,k=1000)),('nb',MultinomialNB())]) classif = SklearnClassifier(pipeline) from nltk.corpus import movie_reviews pos = [FreqDist(movie_reviews.words(i)) for i in movie_reviews.fileids('pos')] neg = [FreqDist(movie_reviews.words(i)) for i in movie_reviews.fileids('neg')] add_label = lambda lst,lab: [(x,lab) for x in lst] #Original code from thread: #classif.train(add_label(pos[:100],'pos') + add_label(neg[:100],'neg')) classif.train(add_label(pos,'pos') + add_label(neg,'neg'))#Made changes here #Original code from thread: #l_pos = np.array(classif.batch_classify(pos[100:])) #l_neg = np.array(classif.batch_classify(neg[100:])) l_pos = np.array(classif.batch_classify(pos))#Made changes here l_neg = np.array(classif.batch_classify(neg))#Made changes here print "Confusion matrix:n%dt%dn%dt%d" % ( (l_pos == 'pos').sum(),(l_pos == 'neg').sum(),(l_neg == 'pos').sum(),(l_neg == 'neg').sum()) 运行此示例后,我收到了警告. C:Python27libsite-packagesscikit_learn-0.13.1-py2.7-win32.eggsklearnfeature_selectionunivariate_selection.py:327: UserWarning: Duplicate scores. Result may depend on feature ordering.There are probably duplicate features,or you used a classification score for a regression task. warn("Duplicate scores. Result may depend on feature ordering." Confusion matrix: 876 124 63 937 所以,我的问题是…… >有谁能告诉我这个错误信息是什么意思? 解决方法
原始代码训练前100个正面和负面的例子,然后对剩余部分进行分类.您已经删除了边界并在训练和分类阶段使用了每个示例,换句话说,您有重复的功能.要解决此问题,请将数据集拆分为两组,即训练和测试.
混淆矩阵更高(或不同),因为您正在训练不同的数据. 混淆矩阵是衡量准确度的指标,并显示误报的数量等.阅读更多内容:http://en.wikipedia.org/wiki/Confusion_matrix (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |