【剑指offer】19、正则表达式匹配 && 【Leetcode】44、W
?题目一请实现一个函数用来匹配包括‘.‘和‘*‘的正则表达式。模式中的字符‘.‘表示任意一个字符,而‘*‘表示它前面的字符可以出现任意次(包含0次)。 在本题中,匹配是指字符串的所有字符匹配整个模式。例如,字符串"aaa"与模式"a.a"和"ab*ac*a"匹配,但是与"aa.a"和"ab*a"均不匹配 思路用动态规划来解决 规定 若 1、当p[j-1] != *?时
2、当p[j-1] = *?时 记p[j-2]=X,分为以下两种情况 (a) "X*"重复了0次:等式右边第一项说明*重复零次,则f[i][j]与 f[i][j-2]真假相同,亦或是p[j-2]是万能字符
(b)"X*"重复了大于等于1次: 等式右边第一项说明要么是万能字符, 第二项表示f[i][j]与f[i-1][j]真假相同,其实就是回退到重复0次的情况 第三项保证复制的正确性
如 s=bcaaa p=bca*? f[5][4]? -> f[4][4] -> f[3][4] -> f[2][4] 此时 s = bc p = bca*,可以匹配 ? ?算法流程 1、初始化二维布尔数组,注意列不一定为0
2、按以上规则自下网上计算出f[i][j] ? 计算过程
? ? ? ? ? ? ? class Solution { public: bool match(char* str,char* pattern) { int m = strlen(str); int n = strlen(pattern); vector<vector<bool>> f(m+1,vector<bool>(n+1,false)); f[0][0] = true; for (int i = 1; i <= m; i++) { f[i][0] = false; } for (int j = 1; j <= n; j++) { f[0][j] = ((j > 1) && (pattern[j-1] == ‘*‘) && (f[0][j-2])); } for (int i = 1; i <= m; i++){ for (int j = 1; j <= n; j++){ if (pattern[j-1] != ‘*‘) f[i][j] = f[i - 1][j - 1] && (str[i - 1] == pattern[j - 1] || ‘.‘ == pattern[j - 1]); else f[i][j] = f[i][j-2] || (pattern[j-2] == ‘.‘) || (str[i-1] == pattern[j-2]) && f[i-1][j]; } } return f[m][n]; } }; ? 题目二Given an input string ( ‘?‘ Matches any single character. ‘*‘ Matches any sequence of characters (including the empty sequence). Example 1: Input: s = "aa" p = "a" Output: false Explanation: "a" does not match the entire string "aa". Example 2: Input: s = "aa" p = "*" Output: true Explanation:?‘*‘ matches any sequence. Example 3: Input: s = "cb" p = "?a" Output: false Explanation:?‘?‘ matches ‘c‘,but the second letter is ‘a‘,which does not match ‘b‘. Example 4: Input: s = "adceb" p = "*a*b" Output: true Explanation:?The first ‘*‘ matches the empty sequence,while the second ‘*‘ matches the substring "dce". Example 5: Input: s = "acdcb" p = "a*c?b" Output: false class Solution { public: bool isMatch(string s,string p) { int n = (int)s.length(); int m = (int)p.length(); vector<vector<bool>> dp(n + 1,vector<bool>(m + 1)); dp[0][0] = true; for (int i = 1; i <= m && p[i - 1] == ‘*‘; i++) dp[0][i] = true; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (p[j - 1] == ‘*‘) dp[i][j] = dp[i - 1][j] || dp[i][j - 1]; else dp[i][j] = (p[j - 1] == ‘?‘ || s[i - 1] == p[j - 1]) && dp[i - 1][j - 1]; } } return dp[n][m]; } }; (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |