加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 百科 > 正文

tensorflow中添加L2正则化损失

发布时间:2020-12-14 06:14:33 所属栏目:百科 来源:网络整理
导读:方法有几种,总结一下方便后面使用。 1. tensorflow自动维护一个tf.GraphKeys.WEIGHTS集合,手动在集合里面添加(tf.add_to_collection())想要进行正则化惩罚的变量。 然后创建? regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE), 再

方法有几种,总结一下方便后面使用。

1. tensorflow自动维护一个tf.GraphKeys.WEIGHTS集合,手动在集合里面添加(tf.add_to_collection())想要进行正则化惩罚的变量。

然后创建?regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE),

再应用函数?regularization_loss = tf.contrib.layers.apply_regularization(regularizer=regurializer) 即可得到对集合tf.GraphKeys.WEIGHTS内的变量的正则化项。


?

2. 先创建?regularizer = ?tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE),

创建变量时指定regularizer,如 w1 = tf.get_variable(‘w1‘,[100,100],regularizer=regularizer),tensorflow会将变量加入集合 tf.GraphKeys.REGULARIZATOIN_LOSSES,

然后设置正则化系数 REGULARIZATION_RATE,通过获取上述的集合即可得到正则化损失

regularization_loss = REGULARIZATION * sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))。

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读