swift – 通用类型集合
在之前的问题得到解决的基础上,但它导致了另一个问题.如果协议/类类型存储在集合中,则检索并实例化它们会引发错误.一个假设的例子如下.该范例基于“程序到接口而不是实现”
What does it mean to “program to an interface”?
instantiate from protocol.Type reference dynamically at runtime public protocol ISpeakable { init() func speak() } class Cat : ISpeakable { required init() {} func speak() { println("Meow"); } } class Dog : ISpeakable { required init() {} func speak() { println("Woof"); } } //Test class is not aware of the specific implementations of ISpeakable at compile time class Test { func instantiateAndCallSpeak<T: ISpeakable>(Animal:T.Type) { let animal = Animal() animal.speak() } } // Users of the Test class are aware of the specific implementations at compile/runtime //works let t = Test() t.instantiateAndCallSpeak(Cat.self) t.instantiateAndCallSpeak(Dog.self) //doesn't work if types are retrieved from a collection //Uncomment to show Error - IAnimal.Type is not convertible to T.Type var animals: [ISpeakable.Type] = [Cat.self,Dog.self,Cat.self] for animal in animals { //t.instantiateAndCallSpeak(animal) //throws error } for (index:Int,value:ISpeakable.Type) in enumerate(animals) { //t.instantiateAndCallSpeak(value) //throws error } 编辑 – 我目前的解决方法是迭代集合,但当然它是有限的,因为api必须知道各种各样的实现.另一个限制是这些类型的子类(例如PersianCat,GermanShepherd)将不会调用它们的重写函数,或者我将转到Objective-C进行救援(NSClassFromString等)或等待SWIFT支持此功能. 注意(背景):实用程序的用户将这些类型推送到数组中,并在通知时执行for循环 var animals: [ISpeakable.Type] = [Cat.self,Cat.self] for Animal in animals { if Animal is Cat.Type { if let AnimalClass = Animal as? Cat.Type { var instance = AnimalClass() instance.speak() } } else if Animal is Dog.Type { if let AnimalClass = Animal as? Dog.Type { var instance = AnimalClass() instance.speak() } } }
基本上答案是:正确,你不能这样做. Swift需要在编译时确定类型参数的具体类型,而不是在运行时.这出现在许多小角落案件中.例如,您无法构造通用闭包并将其存储在变量中而不指定类型.
如果我们将其归结为最小的测试用例,这可能会更清楚一些 protocol Creatable { init() } struct Object : Creatable { init() {} } func instantiate<T: Creatable>(Thing: T.Type) -> T { return Thing() } // works. object is of type "Object" let object = instantiate(Object.self) // (1) // 'Creatable.Type' is not convertible to 'T.Type' let type: Creatable.Type = Object.self let thing = instantiate(type) // (2) 在第1行,编译器有一个问题:在这个实例化实例中T应该是什么类型?这很容易,它应该是对象.这是一个具体的类型,所以一切都很好. 在第2行,没有Swift可以制作的具体类型T.它只有Creatable,这是一个抽象类型(我们通过代码检查知道类型的实际值,但Swift不考虑值,只是类型) .获取和返回协议是可以的,但是将它们变成类型参数是不可行的.今天,斯威夫特不合法. 这在Swift Programming Language: Generic Parameters and Arguments中暗示:
你需要做任何你想在Swift中做另一种方式的事情. 作为一个有趣的奖金,尝试明确要求不可能: let thing = instantiate(Creatable.self) 并且…迅速崩溃. 从您的进一步评论中,我认为闭包完全符合您的要求.你已经使你的协议需要简单的构造(init()),但这是一个不必要的限制.您只需要调用者告诉函数如何构造对象.使用闭包很容易,并且不需要以这种方式进行类型参数化.这不是一个解决方法;我相信这是实现您所描述的模式的更好方法.请考虑以下内容(一些小的更改,使示例更像Swift): // Removed init(). There's no need for it to be trivially creatable. // Cocoa protocols that indicate a method generally end in "ing" // (NSCopying,NSCoding,NSLocking). They do not include "I" public protocol Speaking { func speak() } // Converted these to structs since that's all that's required for // this example,but it works as well for classes. struct Cat : Speaking { func speak() { println("Meow"); } } struct Dog : Speaking { func speak() { println("Woof"); } } // Demonstrating a more complex object that is easy with closures,// but hard with your original protocol struct Person: Speaking { let name: String func speak() { println("My name is (name)") } } // Removed Test class. There was no need for it in the example,// but it works fine if you add it. // You pass a closure that returns a Speaking. We don't care *how* it does // that. It doesn't have to be by construction. It could return an existing one. func instantiateAndCallSpeak(builder: () -> Speaking) { let animal = builder() animal.speak() } // Can call with an immediate form. // Note that Cat and Dog are not created here. They are not created until builder() // is called above. @autoclosure would avoid the braces,but I typically avoid it. instantiateAndCallSpeak { Cat() } instantiateAndCallSpeak { Dog() } // Can put them in an array,though we do have to specify the type here. You could // create a "typealias SpeakingBuilder = () -> Speaking" if that came up a lot. // Again note that no Speaking objects are created here. These are closures that // will generate objects when applied. // Notice how easy it is to pass parameters here? These don't all have to have the // same initializers. let animalBuilders: [() -> Speaking] = [{ Cat() },{ Dog() },{ Person(name: "Rob") }] for animal in animalBuilders { instantiateAndCallSpeak(animal) } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |