加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > Linux > 正文

LINUX实战:TensorFlowSharp入门使用C#编写TensorFlow人工智能应

发布时间:2020-12-13 17:39:36 所属栏目:Linux 来源:网络整理
导读:《LINUX实战:TensorFlowSharp入门使用C#编写TensorFlow人工智能应用》要点: 本文介绍了LINUX实战:TensorFlowSharp入门使用C#编写TensorFlow人工智能应用,希望对您有用。如果有疑问,可以联系我们。 TensorFlowSharp入门使用C#编写TensorFlow人工智能利用

《LINUX实战:TensorFlowSharp入门使用C#编写TensorFlow人工智能应用》要点:
本文介绍了LINUX实战:TensorFlowSharp入门使用C#编写TensorFlow人工智能应用,希望对您有用。如果有疑问,可以联系我们。

TensorFlowSharp入门使用C#编写TensorFlow人工智能利用学习.

TensorFlow简单先容

TensorFlow 是谷歌的第二代机器学习系统,依照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍.

TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow.任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分解(auto-differentiation).通过灵活的Python接口,要在TensorFlow中表达想法也会很容易.

TensorFlow 对于实际的产物也是很有意义的.将思路从桌面GPU训练无缝搬迁到手机中运行.

示例Python代码:

import tensorflow as tf
import numpy as np
# Create 100 phony x,y data points in NumPy,y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3,but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1],-1.0,1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# Before starting,initialize the variables.  We will 'run' this first.
init = tf.global_variables_initializer()
# Launch the graph.
sess = tf.Session()
sess.run(init)
# Fit the line.
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step,sess.run(W),sess.run(b))
# Learns best fit is W: [0.1],b: [0.3]?

使用TensorFlowSharp?

GitHub:https://github.com/migueldeicaza/TensorFlowSharp

官方源码库,该项目支持跨平台,使用Mono.

可以使用NuGet 安装TensorFlowSharp,如下:

Install-Package TensorFlowSharp

编写简单应用

使用VS2017新建一个.NET Framework 节制台应用 tensorflowdemo,接着添加TensorFlowSharp 引用.

TensorFlowSharp 包比拟大,需要耐心等待.

然后在项目属性中生成->平台目的 改为 x64.

打开Program.cs 写入如下代码:

? ? ? ? static void Main(string[] args)
? ? ? ? {
? ? ? ? ? ?
using (var session = new TFSession())
? ? ? ? ? ? {
? ? ? ? ? ? ? ?
var graph = session.Graph;
? ? ? ? ? ? ? ? Console.WriteLine(TFCore.Version);
? ? ? ? ? ? ? ?
var a = graph.Const(2);
? ? ? ? ? ? ? ?
var b = graph.Const(3);
? ? ? ? ? ? ? ? Console.WriteLine(
"a=2 b=3");

? ? ? ? ? ? ? ?
// 两常量加
? ? ? ? ? ? ? ? var addingResults = session.GetRunner().Run(graph.Add(a,b));
? ? ? ? ? ? ? ?
var addingResultValue = addingResults[0].GetValue();
? ? ? ? ? ? ? ? Console.WriteLine(
"a+b={0}",addingResultValue);

? ? ? ? ? ? ? ?
// 两常量乘
? ? ? ? ? ? ? ? var multiplyResults = session.GetRunner().Run(graph.Mul(a,b));
? ? ? ? ? ? ? ?
var multiplyResultValue = multiplyResults[0].GetValue();
? ? ? ? ? ? ? ? Console.WriteLine(
"a*b={0}",multiplyResultValue);
? ? ? ? ? ? ? ?
var tft = new TFTensor(Encoding.UTF8.GetBytes($"Hello TensorFlow Version {TFCore.Version}! LineZero"));
? ? ? ? ? ? ? ?
var hello = graph.Const(tft);
? ? ? ? ? ? ? ?
var helloResults = session.GetRunner().Run(hello);
? ? ? ? ? ? ? ? Console.WriteLine(Encoding.UTF8.GetString((
byte[])helloResults[0].GetValue()));
? ? ? ? ? ? }
? ? ? ? ? ? Console.ReadKey();
? ? ? ? }? ? ? ?

运行程序成果如下:

?

TensorFlow C# image recognition

图像辨认示例体验

https://github.com/migueldeicaza/TensorFlowSharp/tree/master/Examples/ExampleInceptionInference

下面学习一个实际的人工智能应用,是非常简单的一个示例,图像辨认.

新建一个 imagerecognition .NET Framework 节制台应用项目,接着添加TensorFlowSharp 引用.

然后在项目属性中生成->平台目的 改为 x64.

接着编写如下代码:

?
    class Program
    {
        static string dir,modelFile,labelsFile;
        public static void Main(string[] args)
        {
            dir = "tmp";
            List<string> files = Directory.GetFiles("img").ToList();
            ModelFiles(dir);
            var graph = new TFGraph();
            // 从文件加载序列化的GraphDef
            var model = File.ReadAllBytes(modelFile);
            //导入GraphDef
            graph.Import(model,"");
            using (var session = new TFSession(graph))
            {
                var labels = File.ReadAllLines(labelsFile);
                Console.WriteLine("TensorFlow图像识别 LineZero");
                foreach (var file in files)
                {
                    // Run inference on the image files
                    // For multiple images,session.Run() can be called in a loop (and
                    // concurrently). Alternatively,images can be batched since the model
                    // accepts batches of image data as input.
                    var tensor = CreateTensorFromImageFile(file);
                    var runner = session.GetRunner();
                    runner.AddInput(graph["input"][0],tensor).Fetch(graph["output"][0]);
                    var output = runner.Run();
                    // output[0].Value() is a vector containing probabilities of
                    // labels for each image in the "batch". The batch size was 1.
                    // Find the most probably label index.
                    var result = output[0];
                    var rshape = result.Shape;
                    if (result.NumDims != 2 || rshape[0] != 1)
                    {
                        var shape = "";
                        foreach (var d in rshape)
                        {
                            shape += $"{d} ";
                        }
                        shape = shape.Trim();
                        Console.WriteLine($"Error: expected to produce a [1 N] shaped tensor where N is the number of labels,instead it produced one with shape [{shape}]");
                        Environment.Exit(1);
                    }
                    // You can get the data in two ways,as a multi-dimensional array,or arrays of arrays,// code can be nicer to read with one or the other,pick it based on how you want to process
                    // it
                    bool jagged = true;
                    var bestIdx = 0;
                    float p = 0,best = 0;
                    if (jagged)
                    {
                        var probabilities = ((float[][])result.GetValue(jagged: true))[0];
                        for (int i = 0; i < probabilities.Length; i++)
                        {
                            if (probabilities[i] > best)
                            {
                                bestIdx = i;
                                best = probabilities[i];
                            }
                        }
                    }
                    else
                    {
                        var val = (float[,])result.GetValue(jagged: false);
                        // Result is [1,N],flatten array
                        for (int i = 0; i < val.GetLength(1); i++)
                        {
                            if (val[0,i] > best)
                            {
                                bestIdx = i;
                                best = val[0,i];
                            }
                        }
                    }
                    Console.WriteLine($"{Path.GetFileName(file)} 最佳匹配: [{bestIdx}] {best * 100.0}% 标识为:{labels[bestIdx]}");
                }
            }
            Console.ReadKey();
        }
        // Convert the image in filename to a Tensor suitable as input to the Inception model.
        static TFTensor CreateTensorFromImageFile(string file)
        {
            var contents = File.ReadAllBytes(file);
            // DecodeJpeg uses a scalar String-valued tensor as input.
            var tensor = TFTensor.CreateString(contents);
            TFGraph graph;
            TFOutput input,output;
            // Construct a graph to normalize the image
            ConstructGraphToNormalizeImage(out graph,out input,out output);
            // Execute that graph to normalize this one image
            using (var session = new TFSession(graph))
            {
                var normalized = session.Run(
                         inputs: new[] { input },inputValues: new[] { tensor },outputs: new[] { output });
                return normalized[0];
            }
        }
        // The inception model takes as input the image described by a Tensor in a very
        // specific normalized format (a particular image size,shape of the input tensor,// normalized pixel values etc.).
        //
        // This function constructs a graph of TensorFlow operations which takes as
        // input a JPEG-encoded string and returns a tensor suitable as input to the
        // inception model.
        static void ConstructGraphToNormalizeImage(out TFGraph graph,out TFOutput input,out TFOutput output)
        {
            // Some constants specific to the pre-trained model at:
            // https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
            //
            // - The model was trained after with images scaled to 224x224 pixels.
            // - The colors,represented as R,G,B in 1-byte each were converted to
            //   float using (value - Mean)/Scale.
            const int W = 224;
            const int H = 224;
            const float Mean = 117;
            const float Scale = 1;
            graph = new TFGraph();
            input = graph.Placeholder(TFDataType.String);
            output = graph.Div(
                x: graph.Sub(
                    x: graph.ResizeBilinear(
                        images: graph.ExpandDims(
                            input: graph.Cast(
                                graph.DecodeJpeg(contents: input,channels: 3),DstT: TFDataType.Float),dim: graph.Const(0,"make_batch")),size: graph.Const(new int[] { W,H },"size")),y: graph.Const(Mean,"mean")),y: graph.Const(Scale,"scale"));
        }
        /// <summary>
        /// 下载初始Graph和标签
        /// </summary>
        /// <param name="dir"></param>
        static void ModelFiles(string dir)
        {
            string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
            modelFile = Path.Combine(dir,"tensorflow_inception_graph.pb");
            labelsFile = Path.Combine(dir,"imagenet_comp_graph_label_strings.txt");
            var zipfile = Path.Combine(dir,"inception5h.zip");
            if (File.Exists(modelFile) && File.Exists(labelsFile))
                return;
            Directory.CreateDirectory(dir);
            var wc = new WebClient();
            wc.DownloadFile(url,zipfile);
            ZipFile.ExtractToDirectory(zipfile,dir);
            File.Delete(zipfile);
        }
    }

这里必要注意的是由于必要下载初始Graph和标签,而且是google的站点,所以得使用一些特殊手段.

最终我随意下载了几张图放到binDebugimg

?

?然后运行法式,首先确保binDebugtmp文件夹下有tensorflow_inception_graph.pb及imagenet_comp_graph_label_strings.txt.

?

人工智能的魅力非常年夜,本文只是一个入门,复制上面的代码,你没法训练模型等等操作.所以道路还是很远,需一步一步来.

更多可以查看 https://github.com/migueldeicaza/TensorFlowSharp 及?https://github.com/tensorflow/models

本文永远更新链接地址

学习更多LINUX教程,请查看站内专栏,如果有LINUX疑问,可以加QQ交流《LINUX实战:TensorFlowSharp入门使用C#编写TensorFlow人工智能应用》。

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读