python – 替换pandas中列内的值
发布时间:2020-12-20 12:35:13 所属栏目:Python 来源:网络整理
导读:我试图替换此数据框中’Period’列的值: Year Period y yhat Contas Resultado 0 2017 1 1.251556e+00 1.251556e+00 Devolu??es 1 2017 2 2.109900e-01 2.109899e-01 Devolu??es 2 2017 3 1.186015e+00 1.186015e+00 Devolu??es 3 2017 4 2.530208e-01 2.53
我试图替换此数据框中’Period’列的值:
Year Period y yhat Contas Resultado 0 2017 1 1.251556e+00 1.251556e+00 Devolu??es 1 2017 2 2.109900e-01 2.109899e-01 Devolu??es 2 2017 3 1.186015e+00 1.186015e+00 Devolu??es 3 2017 4 2.530208e-01 2.530208e-01 Devolu??es 4 2017 5 2.305744e-01 2.305745e-01 Devolu??es 5 2017 6 2.367768e-01 2.367768e-01 Devolu??es 6 2017 7 2.509670e-01 2.509670e-01 Devolu??es 7 2017 8 2.525350e-01 2.525350e-01 Devolu??es 8 2017 9 2.509663e-01 2.509663e-01 Devolu??es 9 2017 10 2.204747e-01 2.204747e-01 Devolu??es 10 2017 11 2.262774e-01 2.262774e-01 Devolu??es 11 2017 12 2.373548e-01 2.373548e-01 Devolu??es 12 2018 1 1.155845e+00 1.155845e+00 Devolu??es ... 使用此命令: repl_dict = { '01': 'M1','02': 'M2','03': 'M3','04': 'M4','05': 'M5','06': 'M6','07': 'M7','08': 'M8','09':'M9','10':'M10','11':'M11','12':'M12' } results['Period'].replace(repl_dict) 但是我收到以下错误: TypeError: Cannot compare types 'ndarray(dtype=int64)' and 'str' 解决方法
Python 3.6 f-strings
df.assign(Period=[f'M{i}' for i in df.Period]) Year Period y yhat Contas Resultado 0 2017 M1 1.251556 1.251556 Devolu??es 1 2017 M2 0.210990 0.210990 Devolu??es 2 2017 M3 1.186015 1.186015 Devolu??es 3 2017 M4 0.253021 0.253021 Devolu??es 4 2017 M5 0.230574 0.230574 Devolu??es 5 2017 M6 0.236777 0.236777 Devolu??es 6 2017 M7 0.250967 0.250967 Devolu??es 7 2017 M8 0.252535 0.252535 Devolu??es 8 2017 M9 0.250966 0.250966 Devolu??es 9 2017 M10 0.220475 0.220475 Devolu??es 10 2017 M11 0.226277 0.226277 Devolu??es 11 2017 M12 0.237355 0.237355 Devolu??es 12 2018 M1 1.155845 1.155845 Devolu??es str.format函数 df.assign(Period=df.Period.map('M{}'.format)) Year Period y yhat Contas Resultado 0 2017 M1 1.251556 1.251556 Devolu??es 1 2017 M2 0.210990 0.210990 Devolu??es 2 2017 M3 1.186015 1.186015 Devolu??es 3 2017 M4 0.253021 0.253021 Devolu??es 4 2017 M5 0.230574 0.230574 Devolu??es 5 2017 M6 0.236777 0.236777 Devolu??es 6 2017 M7 0.250967 0.250967 Devolu??es 7 2017 M8 0.252535 0.252535 Devolu??es 8 2017 M9 0.250966 0.250966 Devolu??es 9 2017 M10 0.220475 0.220475 Devolu??es 10 2017 M11 0.226277 0.226277 Devolu??es 11 2017 M12 0.237355 0.237355 Devolu??es 12 2018 M1 1.155845 1.155845 Devolu??es (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |