python数据结构之图深度优先和广度优先实例详解
|
本篇章节讲解python数据结构之图深度优先和广度优先用法。分享给大家供大家参考。具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 深度优先算法: (1)访问初始顶点v并标记顶点v已访问。 广度优先算法: (1)顶点v入队列。 代码:
#!/usr/bin/python
# -*- coding: utf-8 -*-
class Graph(object):
def __init__(self,*args,**kwargs):
self.node_neighbors = {}
self.visited = {}
def add_nodes(self,nodelist):
for node in nodelist:
self.add_node(node)
def add_node(self,node):
if not node in self.nodes():
self.node_neighbors[node] = []
def add_edge(self,edge):
u,v = edge
if(v not in self.node_neighbors[u]) and ( u not in self.node_neighbors[v]):
self.node_neighbors[u].append(v)
if(u!=v):
self.node_neighbors[v].append(u)
def nodes(self):
return self.node_neighbors.keys()
def depth_first_search(self,root=None):
order = []
def dfs(node):
self.visited[node] = True
order.append(node)
for n in self.node_neighbors[node]:
if not n in self.visited:
dfs(n)
if root:
dfs(root)
for node in self.nodes():
if not node in self.visited:
dfs(node)
print order
return order
def breadth_first_search(self,root=None):
queue = []
order = []
def bfs():
while len(queue)> 0:
node = queue.pop(0)
self.visited[node] = True
for n in self.node_neighbors[node]:
if (not n in self.visited) and (not n in queue):
queue.append(n)
order.append(n)
if root:
queue.append(root)
order.append(root)
bfs()
for node in self.nodes():
if not node in self.visited:
queue.append(node)
order.append(node)
bfs()
print order
return order
if __name__ == '__main__':
g = Graph()
g.add_nodes([i+1 for i in range(8)])
g.add_edge((1,2))
g.add_edge((1,3))
g.add_edge((2,4))
g.add_edge((2,5))
g.add_edge((4,8))
g.add_edge((5,8))
g.add_edge((3,6))
g.add_edge((3,7))
g.add_edge((6,7))
print "nodes:",g.nodes()
order = g.breadth_first_search(1)
order = g.depth_first_search(1)
结果: nodes: [1,2,3,4,5,6,7,8] 广度优先: 深度优先: [1,8,7] 希望本文所述对大家的Python程序设计有所帮助。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
