python – Pandas SQL相当于update by group by
发布时间:2020-12-20 11:53:13 所属栏目:Python 来源:网络整理
导读:尽管如此,我找不到正确的方法来获得在pandas中运行的等效查询. update product set maxrating = (select max(rating) from rating where source = 'customer' and product.sku = rating.sku group by sku) where maxrating is null; 熊猫 product = pd.DataF
|
尽管如此,我找不到正确的方法来获得在pandas中运行的等效查询.
update product
set maxrating = (select max(rating)
from rating
where source = 'customer'
and product.sku = rating.sku
group by sku)
where maxrating is null;
熊猫 product = pd.DataFrame({'sku':[1,2,3],'maxrating':[0,1]})
rating = pd.DataFrame({'sku':[1,1,3,'rating':[2,5,4],'source':['retailer','customer','retailer','customer']})
expected_result = pd.DataFrame({'sku':[1,'maxrating':[5,1]})
SQL drop table if exists product;
create table product(sku integer primary key,maxrating int);
insert into product(maxrating) values(null),(null),(1);
drop table if exists rating; create table rating(sku int,rating int,source text);
insert into rating values(1,'retailer'),(1,'customer'),(2,(3,4,'customer');
update product
set maxrating = (select max(rating)
from rating
where source = 'customer'
and product.sku = rating.sku
group by sku)
where maxrating is null;
select *
from product;
怎么做到呢? 解决方法
试试这个:
In [220]: product.ix[product.maxrating == 0,'maxrating'] = product.sku.map(rating.groupby('sku')['rating'].max())
In [221]: product
Out[221]:
maxrating sku
0 5 1
1 3 2
2 1 3
或使用普通面具: In [222]: mask = (product.maxrating == 0)
In [223]: product.ix[mask,'maxrating'] = product.ix[mask,'maxrating'].map(rating.groupby('sku')['rating'].max())
In [224]: product
Out[224]:
maxrating sku
0 5 1
1 3 2
2 1 3
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
