加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python – “statsmodels”和“sklearn”中的Logit估计器

发布时间:2020-12-20 11:36:37 所属栏目:Python 来源:网络整理
导读:我很确定它是一个功能,而不是一个bug,但我想知道是否有办法让sklearn和statsmodel在logit估计中匹配.一个非常简单的例子: import numpy as npimport statsmodels.formula.api as smfrom sklearn.linear_model import LogisticRegressionnp.random.seed(123)
我很确定它是一个功能,而不是一个bug,但我想知道是否有办法让sklearn和statsmodel在logit估计中匹配.一个非常简单的例子:

import numpy as np
import statsmodels.formula.api as sm
from sklearn.linear_model import LogisticRegression

np.random.seed(123)

n = 100
y = np.random.random_integers(0,1,n)
x = np.random.random((n,2))
# Constant term
x[:,0] = 1.

statsmodels的估计值:

sm_lgt = sm.Logit(y,x).fit()
    Optimization terminated successfully.
             Current function value: 0.675320
             Iterations 4
print sm_lgt.params
    [ 0.38442   -1.1429183]

和sklearn的估计:

sk_lgt = LogisticRegression(fit_intercept=False).fit(x,y)
print sk_lgt.coef_
    [[ 0.16546794 -0.72637982]]

我认为这与sklearn中的实现有关,它使用某种正则化.有没有选择来估计一个准分子logit,就像在statsmodels中一样(它的速度更快,扩展性更好).另外,sklearn是否提供推理(标准错误)或边际效应?

解决方法

Is there an option to estimate a barebones logit as in statsmodels

您可以将C(反正则化强度)参数设置为任意高的常数,只要它是有限的:

>>> sk_lgt = LogisticRegression(fit_intercept=False,C=1e9).fit(x,y)
>>> print(sk_lgt.coef_)
[[ 0.38440594 -1.14287175]]

关闭正则化是不可能的,因为底层求解器Liblinear不支持这一点.

Also,does sklearn provide inference (standard errors) or marginal effects?

没有.有一个建议添加这个,但它还没有在主代码库中.

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读