加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

10.python3标准库--加密

发布时间:2020-12-20 10:54:29 所属栏目:Python 来源:网络整理
导读:1 2 3 4 ‘‘‘ 加密可以保护消息安全,以便验证其正确性并保护消息不被截获。 python的加密支持包括hashlib和hmac,hashlib使用标准算法生成消息内容签名,hmac则用于验证消息在传输过程中未被修改 ‘‘‘ (一)hashlib:密码散列 1 2 3 4 5 ‘‘‘ hashli
1
2
3
4
‘‘‘
加密可以保护消息安全,以便验证其正确性并保护消息不被截获。
python的加密支持包括hashlib和hmac,hashlib使用标准算法生成消息内容签名,hmac则用于验证消息在传输过程中未被修改
‘‘‘

  

(一)hashlib:密码散列

1
2
3
4
5
‘‘‘
hashlib模块定义了一个api来访问不同的密码散列算法。
要使用一个特定的散列算法,可以用适当的构造器函数或者new方法来创建一个散列对象。
不论是用哪个具体的算法,这些对象都使用相同的api
‘‘‘

  

1.散列算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import? hashlib
‘‘‘
由于hashlib有OpenSSL提供底层支持,所以OpenSSL库提供的所有算法都可以用,
比如:md5,sha1,sha224,sha256,sha384,sha512
?
有些算法在所有平台上都可以用,有些则依赖于底层库。这两类算法分别由algorithms_guaranteed和algorithms_available提供
‘‘‘
?
print ( "," .join( sorted (hashlib.algorithms_guaranteed)))
‘‘‘
blake2b,blake2s,md5,sha3_224,sha3_256,sha3_384,sha3_512,sha512,shake_128,shake_256
‘‘‘
print ( "," .join( sorted (hashlib.algorithms_available)))
‘‘‘
0,SHA1,SHA224,SHA256,SHA384,SHA512,blake2b,blake2b512,blake2s256,md4,md5-sha1,mdc2,ripemd160,shake_256,whirlpool
‘‘‘

  

2.md5示例

1
2
3
4
5
6
7
8
9
10
import? hashlib
?
# 创建一个md5散列对象
m? =? hashlib.md5()
# 传入二进制数据
data? =? "从前有座山" .encode( "utf-8" )
m.update(data)
# 获取加密后的值,digest是二进制,hexdigest则是十六进制
print (m.digest())?? # b‘pI;x82^~xf7;z:x89xf5xdcxfbdx04‘
print (m.hexdigest())?? # b‘pI;x82^~xf7;z:x89xf5xdcxfbdx04‘

  

3.sha1示例

1
2
3
4
5
6
7
8
9
10
11
12
13
import? hashlib
?
‘‘‘
虽然加密方式不一样,但是api都是一样的
‘‘‘
# 创建一个sha1散列对象
m? =? hashlib.sha1()
# 传入二进制数据
data? =? "从前有座山" .encode( "utf-8" )
m.update(data)
# 获取加密后的值,digest是二进制,hexdigest则是十六进制
print (m.digest())?? # b‘Axe6x19x8dxcaxa9vVxaf)xf9x9ax91xaf x8dx18PSxcf‘
print (m.hexdigest())?? # 41e6198dcaa97656af29f99a91af208d185053cf

  

4.按名创建散列

1
2
3
4
5
6
7
8
9
10
11
import? hashlib
?
‘‘‘
虽然哈希是很难破解的,但是现在可能会通过撞库。
就是先准备大量的数据,然后生成哈希值。然后通过哈希值再反过来推测出原来的值,就是碰运气。
但是也可能真的中了,因此我们可以进行一个加盐操作。
‘‘‘
m? =? hashlib.md5(b "xxx" )
# 就是按照我指定的参数进行加密,这样就基本不可能破解了
m.update( "从前有座山" .encode( "utf-8" ))
print (m.hexdigest())?? # a11346465f75d703a166b3c2d30d599a

  

5.增量更新

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import? hashlib
?
‘‘‘
update可以反复调用的,不一定非要将整个文件进行一次性加密
‘‘‘
data? =? "abcde"
m? =? hashlib.md5()
m.update(data.encode( "utf-8" ))
print (m.hexdigest())?? # ab56b4d92b40713acc5af89985d4b786
?
?
m2? =? hashlib.md5()
m2.update( "从" .encode( "utf-8" ))
m2.update( "前" .encode( "utf-8" ))
m2.update( "有" .encode( "utf-8" ))
m2.update( "座" .encode( "utf-8" ))
m2.update( "山" .encode( "utf-8" ))
print (m.hexdigest())?? # ab56b4d92b40713acc5af89985d4b786

  

(二)hmac:密码消息签名与验证

1
2
3
4
5
‘‘‘
hmac算法可以用于验证信息的完整性,这些信息可能在应用之间传递,或者存储在一个可能有安全威胁的地方。
基本思想是生成实际数据的一个密码散列,并提供一个共享的秘密秘钥。
然后使用得到的散列检查所传输或存储的消息,以确定一个信任级别,而不传输秘密秘钥
‘‘‘

  

1.消息签名

1
2
3
4
5
6
7
8
9
10
import? hmac
?
‘‘‘
new函数会创建一个新对象来计算消息签名
‘‘‘
digest_maker? =? hmac.new( "秘密秘钥" .encode( "utf-8" ))
?
# 默认使用md5
digest_maker.update(b "aaaaaa" )
print (digest_maker.hexdigest())?? # b031cd2f7e9d4db62339130734b48152

  

2.候选摘要类型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import? hmac
?
‘‘‘
尽管hmac的默认密码算法是md5,但这并不是最安全的方法。md5散列值有一些缺点,如冲突。
一般认为sha1算法更健壮,更建议使用
‘‘‘
digest_maker? =? hmac.new( "秘密秘钥" .encode( "utf-8" ),b" "," sha1")
?
# 默认使用md5
digest_maker.update(b "aaaaaa" )
print (digest_maker.hexdigest())?? # ed4138f1e4b9dccb616d04750d45c85d6c5bc95c
?
‘‘‘
new函数有三个参数,第一个参数是秘钥,这个秘钥会在通信双方之间共享,使两段都可以使用相同的值。
第二个参数是一个初始的消息,如果传输的消息很小,那么就可以把消息内容作为第二个参数传进去,而不需要使用update。
第三个参数则是使用的摘要模块(即使用什么算法)。默认使用hashlib.md5,但是我们传入了"sha1",那么会使用hashlib.sha1算法
‘‘‘

  

(三)secrets

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import? secrets
??
# secrets貌似是python3.6里新增的模块,先来看看api
# secrets.choice(iterable),从可迭代对象里随机选择一个元素并返回
# secrets.randbelow(n),从[0,n)中随机选择一个数并返回
# secrets.randbits(k),返回带有k个随机位的整数
# secrets.token_bytes(nbytes=None),返回一个包含n个bytes的随机字符串
# secrets.token_hex(nbytes=None),返回一个包含n个bytes的16进制随机文本字符串,每个字节转换成两个16进制数字,一般用来生成随即密码
# secrets.token_urlsafe(nbytes=None),返回一个包含n个bytes的随即url字符串,可以用来生成一个临时的随机令牌
# secrets.compare_digest(a,b),比较两个字符串是否相等
??
print (secrets.choice( "古明地盆" ))?? # 古
print (secrets.choice([ "satori" ,? "mashiro" ,? "nagisa" ]))?? # nagisa
# 和random.choice()是类似的
??
print (secrets.randbelow( 8 ))?? # 6
# 和random.randint()类似,但是secrets.randbelow()只能默认从零开始,且不包含右端点
??
print (secrets.randbits( 7 ))?? # 96
??
print (secrets.token_bytes())?? # b‘x87x98x1cx80TOxcfx82xc9xf1xd6xf6fxd7xd7xaexea.xfd0yxd6xafxfbexb4v[email?protected]xc8txe6‘
print (secrets.token_bytes(nbytes = 20 ))?? # b‘xa5:(xf2xcbxb2xd8xbcexacnx8cx95x05:x07e#xa7M‘
??
print (secrets.token_hex())?? # 0904e492deaab1270f11671d687f3bb2c7ead5283bfe55a3b51e560101c38828
print (secrets.token_hex( 20 ))?? # 851801ed1367bc946b1f28812a83a7e84d91908e
??
print (secrets.token_urlsafe())?? # sGGhrL8VLECMYalQ5DHMDm0yugoVsr2M-SvN4z2Qk8k
print (secrets.token_urlsafe(nbytes = 20 ))?? # PIvP0VoRxvfignT1MH_p2vNog9U

  

(四)base64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import? base64
??
s? =? bytes( "古明地盆" ,encoding = "utf-8" )
??
en_data1? =? base64.b64encode(s)
print (en_data1)?? # b‘5Y+k5piO5Zyw55uG‘
de_data1? =? base64.b64decode(en_data1)
print ( str (de_data1,encoding = "utf-8" ))?? # 古明地盆
??
# 可以看出来,是为了考虑url安全的一种加密方式
# 与普通的b64encode不同的是,会将一些字符进行一个替换
en_data2? =? base64.urlsafe_b64encode(s)
print (en_data2)?? # b‘5Y-k5piO5Zyw55uG‘
de_data2? =? base64.urlsafe_b64decode(en_data2)
print ( str (de_data2,encoding = "utf-8" ))?? # 古明地盆

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读