如何计算keras中的接收操作特性(ROC)和AUC?
发布时间:2020-12-20 10:33:04 所属栏目:Python 来源:网络整理
导读:我有一个多输出(200)二进制分类模型,我在keras中写道. 在这个模型中,我想添加其他指标,如ROC和AUC,但据我所知,keras没有内置的ROC和AUC指标函数. 我试图从scikit-learn导入ROC,AUC功能 from sklearn.metrics import roc_curve,aucfrom keras.models import S
我有一个多输出(200)二进制分类模型,我在keras中写道.
在这个模型中,我想添加其他指标,如ROC和AUC,但据我所知,keras没有内置的ROC和AUC指标函数. 我试图从scikit-learn导入ROC,AUC功能 from sklearn.metrics import roc_curve,auc from keras.models import Sequential from keras.layers import Dense . . . model.add(Dense(200,activation='relu')) model.add(Dense(300,activation='relu')) model.add(Dense(400,activation='relu')) model.add(Dense(200,init='normal',activation='softmax')) #outputlayer model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy','roc_curve','auc']) 但它给出了这个错误:
我应该如何添加ROC,AUC到keras? 解决方法
由于您无法通过小批量计算ROC和AUC,因此您只能在一个时期结束时计算它.从
jamartinh开始有一个解决方案,为方便起见,我修补了下面的代码:
from sklearn.metrics import roc_auc_score from keras.callbacks import Callback class roc_callback(Callback): def __init__(self,training_data,validation_data): self.x = training_data[0] self.y = training_data[1] self.x_val = validation_data[0] self.y_val = validation_data[1] def on_train_begin(self,logs={}): return def on_train_end(self,logs={}): return def on_epoch_begin(self,epoch,logs={}): return def on_epoch_end(self,logs={}): y_pred = self.model.predict(self.x) roc = roc_auc_score(self.y,y_pred) y_pred_val = self.model.predict(self.x_val) roc_val = roc_auc_score(self.y_val,y_pred_val) print('rroc-auc: %s - roc-auc_val: %s' % (str(round(roc,4)),str(round(roc_val,4))),end=100*' '+'n') return def on_batch_begin(self,batch,logs={}): return def on_batch_end(self,logs={}): return model.fit(X_train,y_train,validation_data=(X_test,y_test),callbacks=[roc_callback(training_data=(X_train,y_train),y_test))]) 使用tf.contrib.metrics.streaming_auc的更具攻击性的方法: import numpy as np import tensorflow as tf from sklearn.metrics import roc_auc_score from sklearn.datasets import make_classification from keras.models import Sequential from keras.layers import Dense from keras.utils import np_utils from keras.callbacks import Callback,EarlyStopping # define roc_callback,inspired by https://github.com/keras-team/keras/issues/6050#issuecomment-329996505 def auc_roc(y_true,y_pred): # any tensorflow metric value,update_op = tf.contrib.metrics.streaming_auc(y_pred,y_true) # find all variables created for this metric metric_vars = [i for i in tf.local_variables() if 'auc_roc' in i.name.split('/')[1]] # Add metric variables to GLOBAL_VARIABLES collection. # They will be initialized for new session. for v in metric_vars: tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES,v) # force to update metric values with tf.control_dependencies([update_op]): value = tf.identity(value) return value # generation a small dataset N_all = 10000 N_tr = int(0.7 * N_all) N_te = N_all - N_tr X,y = make_classification(n_samples=N_all,n_features=20,n_classes=2) y = np_utils.to_categorical(y,num_classes=2) X_train,X_valid = X[:N_tr,:],X[N_tr:,:] y_train,y_valid = y[:N_tr,y[N_tr:,:] # model & train model = Sequential() model.add(Dense(2,activation="softmax",input_shape=(X.shape[1],))) model.compile(loss='categorical_crossentropy',auc_roc]) my_callbacks = [EarlyStopping(monitor='auc_roc',patience=300,verbose=1,mode='max')] model.fit(X,y,validation_split=0.3,shuffle=True,batch_size=32,nb_epoch=5,callbacks=my_callbacks) # # or use independent valid set # model.fit(X_train,# validation_data=(X_valid,y_valid),# batch_size=32,# callbacks=my_callbacks) (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |