加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python – NumPy版本的“指数加权移动平均线”,相当于pandas.ewm

发布时间:2020-12-20 10:32:33 所属栏目:Python 来源:网络整理
导读:如何获得NumPy中的指数加权移动平均值,就像下面的 pandas一样? import pandas as pdimport pandas_datareader as pdrfrom datetime import datetime# Declare variablesibm = pdr.get_data_yahoo(symbols='IBM',start=datetime(2000,1,1),end=datetime(2012
如何获得NumPy中的指数加权移动平均值,就像下面的 pandas一样?

import pandas as pd
import pandas_datareader as pdr
from datetime import datetime

# Declare variables
ibm = pdr.get_data_yahoo(symbols='IBM',start=datetime(2000,1,1),end=datetime(2012,1)).reset_index(drop=True)['Adj Close']
windowSize = 20

# Get PANDAS exponential weighted moving average
ewm_pd = pd.DataFrame(ibm).ewm(span=windowSize,min_periods=windowSize).mean().as_matrix()

print(ewm_pd)

我用NumPy尝试了以下内容

import numpy as np
import pandas_datareader as pdr
from datetime import datetime

# From this post: https://stackoverflow.com/a/40085052/3293881 by @Divakar
def strided_app(a,L,S): # Window len = L,Stride len/stepsize = S
    nrows = ((a.size - L) // S) + 1
    n = a.strides[0]
    return np.lib.stride_tricks.as_strided(a,shape=(nrows,L),strides=(S * n,n))

def numpyEWMA(price,windowSize):
    weights = np.exp(np.linspace(-1.,0.,windowSize))
    weights /= weights.sum()

    a2D = strided_app(price,windowSize,1)

    returnArray = np.empty((price.shape[0]))
    returnArray.fill(np.nan)
    for index in (range(a2D.shape[0])):
        returnArray[index + windowSize-1] = np.convolve(weights,a2D[index])[windowSize - 1:-windowSize + 1]
    return np.reshape(returnArray,(-1,1))

# Declare variables
ibm = pdr.get_data_yahoo(symbols='IBM',1)).reset_index(drop=True)['Adj Close']
windowSize = 20

# Get NumPy exponential weighted moving average
ewma_np = numpyEWMA(ibm,windowSize)

print(ewma_np)

但结果与大熊猫的结果并不相似.

是否有更好的方法直接在NumPy中计算指数加权移动平均值并得到与pandas.ewm().mean()完全相同的结果?

在大熊猫解决方案的60,000个请求中,我得到大约230秒.我确信,使用纯NumPy,这可以显着降低.

解决方法

更新于08/06/2019

纯粹的,快速的&大输入的矢量化解决方案

用于就地计算的out参数,
dtype参数,
索引顺序参数

这个函数相当于pandas的ewm(adjust = False).mean(),但要快得多. ewm(adjust = True).mean()(pandas的默认值)可以在结果的开头产生不同的值.我正在努力为此解决方案添加adjust功能.

当输入太大时,@Divakar’s answer会导致浮点精度问题.这是因为(1-α)**(n 1) – >当n – >时为0 inf和alpha – > 1,导致在计算中弹出除零和NaN值.

这是我最快的解决方案,没有精度问题,几乎完全矢量化.它有点复杂,但性能很好,特别是对于非常大的输入.不使用就地计算(可以使用out参数,节省内存分配时间):100M元素输入向量为3.62秒,100K元素输入向量为3.2ms,相对较老的5000元素输入向量为293μs PC(结果将随着不同的alpha / row_size值而变化).

# tested with python3 & numpy 1.15.2
import numpy as np

def ewma_vectorized_safe(data,alpha,row_size=None,dtype=None,order='C',out=None):
    """
    Reshapes data before calculating EWMA,then iterates once over the rows
    to calculate the offset without precision issues
    :param data: Input data,will be flattened.
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param row_size: int,optional
        The row size to use in the computation. High row sizes need higher precision,low values will impact performance. The optimal value depends on the
        platform and the alpha being used. Higher alpha values require lower
        row size. Default depends on dtype.
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32,then it will use float32.
    :param order: {'C','F','A'},optional
        Order to use when flattening the data. Defaults to 'C'.
    :param out: ndarray,or None,optional
        A location into which the result is stored. If provided,it must have
        the same shape as the desired output. If not provided or `None`,a freshly-allocated array is returned.
    :return: The flattened result.
    """
    data = np.array(data,copy=False)

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float
    else:
        dtype = np.dtype(dtype)

    row_size = int(row_size) if row_size is not None 
               else get_max_row_size(alpha,dtype)

    if data.size <= row_size:
        # The normal function can handle this input,use that
        return ewma_vectorized(data,dtype=dtype,order=order,out=out)

    if data.ndim > 1:
        # flatten input
        data = np.reshape(data,-1,order=order)

    if out is None:
        out = np.empty_like(data,dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    row_n = int(data.size // row_size)  # the number of rows to use
    trailing_n = int(data.size % row_size)  # the amount of data leftover
    first_offset = data[0]

    if trailing_n > 0:
        # set temporary results to slice view of out parameter
        out_main_view = np.reshape(out[:-trailing_n],(row_n,row_size))
        data_main_view = np.reshape(data[:-trailing_n],row_size))
    else:
        out_main_view = out
        data_main_view = data

    # get all the scaled cumulative sums with 0 offset
    ewma_vectorized_2d(data_main_view,axis=1,offset=0,out=out_main_view)

    scaling_factors = (1 - alpha) ** np.arange(1,row_size + 1)
    last_scaling_factor = scaling_factors[-1]

    # create offset array
    offsets = np.empty(out_main_view.shape[0],dtype=dtype)
    offsets[0] = first_offset
    # iteratively calculate offset for each row
    for i in range(1,out_main_view.shape[0]):
        offsets[i] = offsets[i - 1] * last_scaling_factor + out_main_view[i - 1,-1]

    # add the offsets to the result
    out_main_view += offsets[:,np.newaxis] * scaling_factors[np.newaxis,:]

    if trailing_n > 0:
        # process trailing data in the 2nd slice of the out parameter
        ewma_vectorized(data[-trailing_n:],offset=out_main_view[-1,-1],out=out[-trailing_n:])
    return out

def get_max_row_size(alpha,dtype=float):
    assert 0. <= alpha < 1.
    # This will return the maximum row size possible on 
    # your platform for the given dtype. I can find no impact on accuracy
    # at this value on my machine.
    # Might not be the optimal value for speed,which is hard to predict
    # due to numpy's optimizations
    # Use np.finfo(dtype).eps if you  are worried about accuracy
    # and want to be extra safe.
    epsilon = np.finfo(dtype).tiny
    # If this produces an OverflowError,make epsilon larger
    return int(np.log(epsilon)/np.log(1-alpha)) + 1

1D ewma功能:

def ewma_vectorized(data,offset=None,out=None):
    """
    Calculates the exponential moving average over a vector.
    Will fail for large inputs.
    :param data: Input data
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param offset: optional
        The offset for the moving average,scalar. Defaults to data[0].
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32,it must have
        the same shape as the input. If not provided or `None`,a freshly-allocated array is returned.
    """
    data = np.array(data,copy=False)

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float64
    else:
        dtype = np.dtype(dtype)

    if data.ndim > 1:
        # flatten input
        data = data.reshape(-1,order)

    if out is None:
        out = np.empty_like(data,dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    if data.size < 1:
        # empty input,return empty array
        return out

    if offset is None:
        offset = data[0]

    alpha = np.array(alpha,copy=False).astype(dtype,copy=False)

    # scaling_factors -> 0 as len(data) gets large
    # this leads to divide-by-zeros below
    scaling_factors = np.power(1. - alpha,np.arange(data.size + 1,dtype=dtype),dtype=dtype)
    # create cumulative sum array
    np.multiply(data,(alpha * scaling_factors[-2]) / scaling_factors[:-1],out=out)
    np.cumsum(out,out=out)

    # cumsums / scaling
    out /= scaling_factors[-2::-1]

    if offset != 0:
        offset = np.array(offset,copy=False)
        # add offsets
        out += offset * scaling_factors[1:]

    return out

2D ewma功能:

def ewma_vectorized_2d(data,axis=None,out=None):
    """
    Calculates the exponential moving average over a given axis.
    :param data: Input data,must be 1D or 2D array.
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param axis: The axis to apply the moving average on.
        If axis==None,the data is flattened.
    :param offset: optional
        The offset for the moving average. Must be scalar or a
        vector with one element for each row of data. If set to None,defaults to the first value of each row.
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32,optional
        Order to use when flattening the data. Ignored if axis is not None.
    :param out: ndarray,copy=False)

    assert data.ndim <= 2

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float64
    else:
        dtype = np.dtype(dtype)

    if out is None:
        out = np.empty_like(data,return empty array
        return out

    if axis is None or data.ndim < 2:
        # use 1D version
        if isinstance(offset,np.ndarray):
            offset = offset[0]
        return ewma_vectorized(data,offset,out=out)

    assert -data.ndim <= axis < data.ndim

    # create reshaped data views
    out_view = out
    if axis < 0:
        axis = data.ndim - int(axis)

    if axis == 0:
        # transpose data views so columns are treated as rows
        data = data.T
        out_view = out_view.T

    if offset is None:
        # use the first element of each row as the offset
        offset = np.copy(data[:,0])
    elif np.size(offset) == 1:
        offset = np.reshape(offset,(1,))

    alpha = np.array(alpha,copy=False)

    # calculate the moving average
    row_size = data.shape[1]
    row_n = data.shape[0]
    scaling_factors = np.power(1. - alpha,np.arange(row_size + 1,dtype=dtype)
    # create a scaled cumulative sum array
    np.multiply(
        data,np.multiply(alpha * scaling_factors[-2],np.ones((row_n,dtype=dtype)
        / scaling_factors[np.newaxis,:-1],out=out_view
    )
    np.cumsum(out_view,out=out_view)
    out_view /= scaling_factors[np.newaxis,-2::-1]

    if not (np.size(offset) == 1 and offset == 0):
        offset = offset.astype(dtype,copy=False)
        # add the offsets to the scaled cumulative sums
        out_view += offset[:,1:]

    return out

用法:

data_n = 100000000
data = ((0.5*np.random.randn(data_n)+0.5) % 1) * 100

span = 5000  # span >= 1
alpha = 2/(span+1)  # for pandas` span parameter

# com = 1000  # com >= 0
# alpha = 1/(1+com)  # for pandas` center-of-mass parameter

# halflife = 100  # halflife > 0
# alpha = 1 - np.exp(np.log(0.5)/halflife)  # for pandas` half-life parameter

result = ewma_vectorized_safe(data,alpha)

只是一个提示

对于给定的alpha,很容易计算“窗口大小”(技术上指数平均值具有无限“窗口”),这取决于该窗口中数据对平均值的贡献.例如,这可用于选择由于边界效应而将结果的多少开始视为不可靠.

def window_size(alpha,sum_proportion):
    # Increases with increased sum_proportion and decreased alpha
    # solve (1-alpha)**window_size = (1-sum_proportion) for window_size        
    return int(np.log(1-sum_proportion) / np.log(1-alpha))

alpha = 0.02
sum_proportion = .99  # window covers 99% of contribution to the moving average
window = window_size(alpha,sum_proportion)  # = 227
sum_proportion = .75  # window covers 75% of contribution to the moving average
window = window_size(alpha,sum_proportion)  # = 68

此线程中使用的alpha = 2 /(window_size 1.0)关系(来自pandas的’span’选项)是上述函数的逆的非常粗略的近似(sum_proportion~ = 0.87). alpha = 1 – np.exp(np.log(1-sum_proportion)/ window_size)更准确(pandas的’half-life’选项等于此公式,sum_proportion = 0.5).

在以下示例中,数据表示连续的噪声信号. cutoff_idx是结果中的第一个位置,其中至少99%的值依赖于数据中的单独值(即,小于1%取决于数据[0]). cutoff_idx之前的数据被排除在最终结果之外,因为它太依赖于数据中的第一个值,因此可能会使平均值偏离.

result = ewma_vectorized_safe(data,chunk_size)
sum_proportion = .99
cutoff_idx = window_size(alpha,sum_proportion)
result = result[cutoff_idx:]

为了说明上面解决的问题你可以运行几次,注意红线的经常出现的错误开始,在cutoff_idx之后跳过:

data_n = 100000
data = np.random.rand(data_n) * 100
window = 1000
sum_proportion = .99
alpha = 1 - np.exp(np.log(1-sum_proportion)/window)

result = ewma_vectorized_safe(data,alpha)

cutoff_idx = window_size(alpha,sum_proportion)
x = np.arange(start=0,stop=result.size)

import matplotlib.pyplot as plt
plt.plot(x[:cutoff_idx+1],result[:cutoff_idx+1],'-r',x[cutoff_idx:],result[cutoff_idx:],'-b')
plt.show()

请注意cutoff_idx == window,因为alpha是使用window_size()函数的反函数设置的,具有相同的sum_proportion.这类似于pandas如何应用ewm(span = window,min_periods = window).

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读