加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

Numpy 数学函数和代数运算使用教程

发布时间:2020-12-17 17:05:24 所属栏目:Python 来源:网络整理
导读:Numpy 使用教程--Numpy 数学函数及代数运算 一、实验介绍 1.1 实验内容 如果你使用 Python 语言进行科学计算,那么一定会接触到 Numpy。Numpy 是支持 Python 语言的数值计算扩充库,其拥有强大的高维度数组处理与矩阵运算能力。除此之外,Numpy 还内建了大量

Numpy 使用教程--Numpy 数学函数及代数运算

一、实验介绍

如果你使用 Python 语言进行科学计算,那么一定会接触到 Numpy。Numpy 是支持 Python 语言的数值计算扩充库,其拥有强大的高维度数组处理与矩阵运算能力。除此之外,Numpy 还内建了大量的函数,方便你快速构建数学模型。

1.3 实验环境

  • python2.7

  • Xfce 终端

  • ipython 终端

本课程难度为一般,属于初级级别课程,适合具有 Python 基础,并对使用 Numpy 进行科学计算感兴趣的用户。

使用 python 自带的运算符,你可以完成数学中的加减乘除,以及取余、取整,幂次计算等。导入自带的 math 模块之后,里面又包含绝对值、阶乘、开平方等一些常用的数学函数。不过,这些函数仍然相对基础。如果要完成更加复杂一些的数学计算,就会显得捉襟见肘了。

numpy 为我们提供了更多的数学函数,以帮助我们更好地完成一些数值计算。下面就依次来看一看。

首先,看一看 numpy 提供的三角函数功能。这些方法有:

  1. numpy.sin(x):三角正弦。

  2. numpy.cos(x):三角余弦。

  3. numpy.tan(x):三角正切。

  4. numpy.arcsin(x):三角反正弦。

  5. numpy.arccos(x):三角反余弦。

  6. numpy.arctan(x):三角反正切。

  7. numpy.hypot(x1,x2):直角三角形求斜边。

  8. numpy.degrees(x):弧度转换为度。

  9. numpy.radians(x):度转换为弧度。

  10. numpy.deg2rad(x):度转换为弧度。

  11. numpy.rad2deg(x):弧度转换为度。

比如,我们可以用上面提到的?numpy.rad2deg(x)?将弧度转换为度。

import?numpy?as?np

np.rad2deg(np.pi)

此处输入图片的描述

这些函数非常简单,就不再一一举例了。

在数学中,双曲函数是一类与常见的三角函数类似的函数。双曲函数经常出现于某些重要的线性微分方程的解中,使用 numpy 计算它们的方法为:

  1. numpy.sinh(x):双曲正弦。

  2. numpy.cosh(x):双曲余弦。

  3. numpy.tanh(x):双曲正切。

  4. numpy.arcsinh(x):反双曲正弦。

  5. numpy.arccosh(x):反双曲余弦。

  6. numpy.arctanh(x):反双曲正切。

数值修约,又称数字修约,是指在进行具体的数字运算前,按照一定的规则确定一致的位数,然后舍去某些数字后面多余的尾数的过程[via. 维基百科]。比如,我们常听到的「4 舍 5 入」就属于数值修约中的一种。

  1. numpy.around(a):平均到给定的小数位数。

  2. numpy.round_(a):将数组舍入到给定的小数位数。

  3. numpy.rint(x):修约到最接近的整数。

  4. numpy.fix(x,y):向 0 舍入到最接近的整数。

  5. numpy.floor(x):返回输入的底部(标量 x 的底部是最大的整数 i)。

  6. numpy.ceil(x):返回输入的上限(标量 x 的底部是最小的整数 i).

  7. numpy.trunc(x):返回输入的截断值。

随机选择几个浮点数,看一看上面方法的区别。

>>>?import?numpy?as?np>>>?a?=?np.array([1.21,?2.53,?3.86])>>>?a
array([?1.21,??2.53,??3.86])>>>?np.around(a)
array([?1.,??3.,??4.])>>>?np.round_(a)
array([?1.,??4.])>>>?np.rint(a)
array([?1.,??4.])>>>?np.fix(a)
array([?1.,??2.,??3.])>>>?np.floor(a)
array([?1.,??3.])>>>?np.ceil(a)
array([?2.,??4.])>>>?np.trunc(a)
array([?1.,??3.])

下面这些方法用于数组内元素或数组间进行求和、求积以及进行差分。

  1. numpy.prod(a,axis,dtype,keepdims):返回指定轴上的数组元素的乘积。

  2. numpy.sum(a,keepdims):返回指定轴上的数组元素的总和。

  3. numpy.nanprod(a,keepdims):返回指定轴上的数组元素的乘积,将 NaN 视作 1。

  4. numpy.nansum(a,keepdims):返回指定轴上的数组元素的总和,将 NaN 视作 0。

  5. numpy.cumprod(a,dtype):返回沿给定轴的元素的累积乘积。

  6. numpy.cumsum(a,dtype):返回沿给定轴的元素的累积总和。

  7. numpy.nancumprod(a,dtype):返回沿给定轴的元素的累积乘积,244); border-radius: 4px;">numpy.nancumsum(a,dtype):返回沿给定轴的元素的累积总和,244); border-radius: 4px;">numpy.diff(a,n,axis):计算沿指定轴的第 n 个离散差分。

  8. numpy.ediff1d(ary,to_end,to_begin):数组的连续元素之间的差异。

  9. numpy.gradient(f):返回 N 维数组的梯度。

  10. numpy.cross(a,b,axisa,axisb,axisc,axis):返回两个(数组)向量的叉积。

  11. numpy.trapz(y,x,dx,axis):使用复合梯形规则沿给定轴积分。

下面,我们选取几个举例测试一下:

>>>?import?numpy?as?np>>>?a=np.arange(5)>>>?a
array([0,?1,?2,?3,?4])>>>?np.prod(a)?#?所有元素乘积0>>>?np.sum(a)?#?所有元素和10>>>?np.nanprod(a)?#?默认轴上所有元素乘积0>>>?np.nansum(a)?#?默认轴上所有元素和10>>>?np.cumprod(a)?#?默认轴上元素的累积乘积。array([0,?0,?0])>>>?np.diff(a)?#?默认轴上元素差分。array([1,?1])

如果你需要进行指数或者对数求解,可以用到以下这些方法。

  1. numpy.exp(x):计算输入数组中所有元素的指数。

  2. numpy.expm1(x):对数组中的所有元素计算 exp(x) - 1.

  3. numpy.exp2(x):对于输入数组中的所有 p,计算 2 ** p。

  4. numpy.log(x):计算自然对数。

  5. numpy.log10(x):计算常用对数。

  6. numpy.log2(x):计算二进制对数。

  7. numpy.log1p(x)log(1 + x)

  8. numpy.logaddexp(x1,x2)log2(2**x1 + 2**x2)

  9. numpy.logaddexp2(x1,244); border-radius: 4px;">log(exp(x1) + exp(x2))

当然,numpy 也提供了一些用于算术运算的方法,使用起来会比 python 提供的运算符灵活一些,主要是可以直接针对数组。

  1. numpy.add(x1,x2):对应元素相加。

  2. numpy.reciprocal(x):求倒数 1/x。

  3. numpy.negative(x):求对应负数。

  4. numpy.multiply(x1,x2):求解乘法。

  5. numpy.divide(x1,x2):相除 x1/x2。

  6. numpy.power(x1,x2):类似于 x1^x2。

  7. numpy.subtract(x1,x2):减法。

  8. numpy.fmod(x1,x2):返回除法的元素余项。

  9. numpy.mod(x1,x2):返回余项。

  10. numpy.modf(x1):返回数组的小数和整数部分。

  11. numpy.remainder(x1,x2):返回除法余数。

>>>?import?numpy?as?np>>>?a1?=?np.random.randint(0,?10,?5)>>>?a2?=?np.random.randint(0,?5)>>>?a1
array([3,?7,?8,?0])>>>?a2
array([1,?6,?4,?4])>>>?np.add(a1,?a2)
array([?4,?15,?14,??4,??4])>>>?np.reciprocal(a1)
array([0,?,?])>>>?np.negative(a1)
array([-3,?-7,?-8,??0,??0])>>>?np.multiply(a1,?a2)
array([?3,?56,?48,??0])>>>?np.divide(a1,?a2)
array([3,?0])>>>?np.power(a1,5764801,262144,0])>>>?np.subtract(a1,?a2)
array([?2,?-1,??2,?-4,?-4])>>>?np.fmod(a1,?a2)
array([0,?0])>>>?np.mod(a1,?0])>>>?np.modf(a1)
(array([?0.,??0.,??0.]),?array([?3.,??7.,??8.,??0.]))>>>?np.remainder(a1,?0])
>>>

求解向量、矩阵、张量的点积等同样是 numpy 非常强大的地方。

  1. numpy.dot(a,b):求解两个数组的点积。

  2. numpy.vdot(a,b):求解两个向量的点积。

  3. numpy.inner(a,b):求解两个数组的内积。

  4. numpy.outer(a,b):求解两个向量的外积。

  5. numpy.matmul(a,b):求解两个数组的矩阵乘积。

  6. numpy.tensordot(a,b):求解张量点积。

  7. numpy.kron(a,b):计算 Kronecker 乘积。

除了上面这些归好类别的方法,numpy 中还有一些用于数学运算的方法,归纳如下:

  1. numpy.angle(z,deg):返回复参数的角度。

  2. numpy.real(val):返回数组元素的实部。

  3. numpy.imag(val):返回数组元素的虚部。

  4. numpy.conj(x):按元素方式返回共轭复数。

  5. numpy.convolve(a,v,mode):返回线性卷积。

  6. numpy.sqrt(x):平方根。

  7. numpy.cbrt(x):立方根。

  8. numpy.square(x):平方。

  9. numpy.absolute(x):绝对值,可求解复数。

  10. numpy.fabs(x):绝对值。

  11. numpy.sign(x):符号函数。

  12. numpy.maximum(x1,x2):最大值。

  13. numpy.minimum(x1,x2):最小值。

  14. numpy.nan_to_num(x):用 0 替换 NaN。

  15. numpy.interp(x,xp,fp,left,right,period):线性插值。

上面,我们分为 8 个类别,介绍了 numpy 中常用到的数学函数。这些方法让复杂的计算过程表达更为简单。除此之外,numpy 中还包含一些代数运算的方法,尤其是涉及到矩阵的计算方法,求解特征值、特征向量、逆矩阵等,非常方便。

  1. numpy.linalg.cholesky(a):Cholesky 分解。

  2. numpy.linalg.qr(a,mode):计算矩阵的 QR 因式分解。

  3. numpy.linalg.svd(a,full_matrices,compute_uv):奇异值分解。

  4. numpy.linalg.eig(a):计算正方形数组的特征值和右特征向量。

  5. numpy.linalg.eigh(a,UPLO):返回 Hermitian 或对称矩阵的特征值和特征向量。

  6. numpy.linalg.eigvals(a):计算矩阵的特征值。

  7. numpy.linalg.eigvalsh(a,UPLO):计算 Hermitian 或真实对称矩阵的特征值。

  8. numpy.linalg.norm(x,ord,keepdims):计算矩阵或向量范数。

  9. numpy.linalg.cond(x,p):计算矩阵的条件数。

  10. numpy.linalg.det(a):计算数组的行列式。

  11. numpy.linalg.matrix_rank(M,tol):使用奇异值分解方法返回秩。

  12. numpy.linalg.slogdet(a):计算数组的行列式的符号和自然对数。

  13. numpy.trace(a,offset,axis1,axis2,out):沿数组的对角线返回总和。

  14. numpy.linalg.solve(a,b):求解线性矩阵方程或线性标量方程组。

  15. numpy.linalg.tensorsolve(a,axes):为 x 解出张量方程a x = b

  16. numpy.linalg.lstsq(a,rcond):将最小二乘解返回到线性矩阵方程。

  17. numpy.linalg.inv(a):计算逆矩阵。

  18. numpy.linalg.pinv(a,rcond):计算矩阵的(Moore-Penrose)伪逆。

  19. numpy.linalg.tensorinv(a,ind):计算N维数组的逆。

数学函数和代数运算方法是使用 numpy 进行数值计算中的利器,numpy 针对矩阵的高效率处理,往往可以达到事半功倍的效果。

原文:https://blog.csdn.net/oxuzhenyi/article/details/78025339

本文地址:http://www.chenxm.cc/post/575.html
版权声明:本文为原创文章,版权归?Pala?所有,欢迎分享本文,转载请保留出处!

PREVIOUS:python 多个列表 list合并成一个大列表

NEXT:Django中 ContentType用法详解

相关文章?关键词:

  • ?6?1正则表达式 提取中文日期(二月二十日)匹配方法

  • ?6?1python 安装scrapy时提示错误:error: Unable to find vcvarsall.bat

  • ?6?1python logging.config配置日志

  • ?6?1Python 爬虫的工具列表

  • ?6?1python模块 furl 使得操纵URL简单化,去除网址中参数

  • ?6?1python错误 ValueError: sample larger than population

  • ?6?1python IO密集型任务、计算密集型任务如何选择使用多线程、多进程

  • ?6?1python库 Better Exceptions 更优化的显示异常


(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读