加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python编程线性回归代码示例

发布时间:2020-12-17 07:46:51 所属栏目:Python 来源:网络整理
导读:用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子、scipy.stats.linregress例子、pandas.ols例子等。 不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用。 一、二维直线的例子 预备知识:

 用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子、scipy.stats.linregress例子、pandas.ols例子等。

不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用。

一、二维直线的例子

预备知识:线性方程y=a∗x+b。y=a∗x+b表示平面一直线

下面的例子中,我们根据房屋面积、房屋价格的历史数据,建立线性回归模型。

然后,根据给出的房屋面积,来预测房屋价格。这里是数据来源

import pandas as pd 
from io import StringIO  
from sklearn import linear_model  
import matplotlib.pyplot as plt 
# 房屋面积与价格历史数据(csv文件) 
csv_data = 'square_feet,pricen150,6450n200,7450n250,8450n300,9450n350,11450n400,15450n600,18450n' 
 
# 读入dataframe 
df = pd.read_csv(StringIO(csv_data)) 
print(df)  
# 建立线性回归模型 
regr = linear_model.LinearRegression()  
# 拟合 
regr.fit(df['square_feet'].reshape(-1,1),df['price']) # 注意此处.reshape(-1,1),因为X是一维的! 
# 不难得到直线的斜率、截距 
a,b = regr.coef_,regr.intercept_ 
 
# 给出待预测面积 
area = 238.5 
 
# 方式1:根据直线方程计算的价格 
print(a * area + b) 
# 方式2:根据predict方法预测的价格 
print(regr.predict(area))  
# 画图 
# 1.真实的点 
plt.scatter(df['square_feet'],df['price'],color='blue')  
# 2.拟合的直线 
plt.plot(df['square_feet'],regr.predict(df['square_feet'].reshape(-1,1)),color='red',linewidth=4) 
 
plt.show() 

二、三维平面的例子

预备知识:线性方程z=a∗x+b∗y+c。z=a∗x+b∗y+c 表示空间一平面

由于找不到真实数据,只好自己虚拟一组数据。

import numpy as np  
from sklearn import linear_model  
from mpl_toolkits.mplot3d import Axes3D 
import matplotlib.pyplot as plt  
xx,yy = np.meshgrid(np.linspace(0,10,10),np.linspace(0,100,10)) 
zz = 1.0 * xx + 3.5 * yy + np.random.randint(0,(10,10))  
# 构建成特征、值的形式 
X,Z = np.column_stack((xx.flatten(),yy.flatten())),zz.flatten() 
 
# 建立线性回归模型 
regr = linear_model.LinearRegression() 
 
# 拟合 
regr.fit(X,Z) 
# 不难得到平面的系数、截距 
a,regr.intercept_  
# 给出待预测的一个特征 
x = np.array([[5.8,78.3]])  
# 方式1:根据线性方程计算待预测的特征x对应的值z(注意:np.sum) 
print(np.sum(a * x) + b)  
# 方式2:根据predict方法预测的值z 
print(regr.predict(x))  
# 画图 
fig = plt.figure() 
ax = fig.gca(projection='3d')  
# 1.画出真实的点 
ax.scatter(xx,yy,zz) 
# 2.画出拟合的平面 
ax.plot_wireframe(xx,regr.predict(X).reshape(10,10)) 
ax.plot_surface(xx,alpha=0.3) 

plt.show() 

效果图

总结

以上就是本文关于python编程线性回归代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python八大排序算法速度实例对比

详解K-means算法在Python中的实现

Python算法之图的遍历

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读