加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

matplotlib绘制动画代码示例

发布时间:2020-12-17 07:36:00 所属栏目:Python 来源:网络整理
导读:matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig

matplotlib从1.1.0版本以后就开始支持绘制动画

下面是几个的示例:

第一个例子使用generator,每隔两秒,就运行函数data_gen:

# -*- coding: utf-8 -*-  
 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
 
fig = plt.figure() 
axes1 = fig.add_subplot(111) 
line,= axes1.plot(np.random.rand(10)) 
 
#因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum 
def update(data): 
  line.set_ydata(data) 
  return line,# 每次生成10个随机数据 
def data_gen(): 
  while True: 
    yield np.random.rand(10) 
 
ani = animation.FuncAnimation(fig,update,data_gen,interval=2*1000) 
plt.show() 

第二个例子使用list(metric),每次从metric中取一行数据作为参数送入update中:

import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
 
start = [1,0.18,0.63,0.29,0.03,0.24,0.86,0.07,0.58,0] 
 
metric =[[0.03,0.65,0.34,0.02,0.22,0.74,0.66,0.65],[0.43,0.55],[0.66,0.75,0.01,0.94,0.72,0.77,0.20,0.81,0.52] 
    ] 
 
fig = plt.figure() 
window = fig.add_subplot(111) 
line,= window.plot(start) 
#如果是参数是list,则默认每次取list中的一个元素,即metric[0],metric[1],... 
def update(data): 
  line.set_ydata(data) 
  return line,ani = animation.FuncAnimation(fig,metric,interval=2*1000) 
plt.show() 

第三个例子:

import numpy as np 
from matplotlib import pyplot as plt 
from matplotlib import animation 
 
# First set up the figure,the axis,and the plot element we want to animate 
fig = plt.figure() 
ax = plt.axes(xlim=(0,2),ylim=(-2,2)) 
line,= ax.plot([],[],lw=2) 
 
# initialization function: plot the background of each frame 
def init(): 
  line.set_data([],[]) 
  return line,# animation function. This is called sequentially 
# note: i is framenumber 
def animate(i): 
  x = np.linspace(0,2,1000) 
  y = np.sin(2 * np.pi * (x - 0.01 * i)) 
  line.set_data(x,y) 
  return line,# call the animator. blit=True means only re-draw the parts that have changed. 
anim = animation.FuncAnimation(fig,animate,init_func=init,frames=200,interval=20,blit=True) 
 
#anim.save('basic_animation.mp4',fps=30,extra_args=['-vcodec','libx264']) 
 
plt.show() 

第四个例子:

# -*- coding: utf-8 -*- 
  
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
 
# 每次产生一个新的坐标点 
def data_gen(): 
  t = data_gen.t 
  cnt = 0 
  while cnt < 1000: 
    cnt+=1 
    t += 0.05 
    yield t,np.sin(2*np.pi*t) * np.exp(-t/10.) 
data_gen.t = 0 
 
# 绘图 
fig,ax = plt.subplots() 
line,lw=2) 
ax.set_ylim(-1.1,1.1) 
ax.set_xlim(0,5) 
ax.grid() 
xdata,ydata = [],[] 
 
# 因为run的参数是调用函数data_gen,所以第一个参数可以不是framenum:设置line的数据,返回line 
def run(data): 
  # update the data 
  t,y = data 
  xdata.append(t) 
  ydata.append(y) 
  xmin,xmax = ax.get_xlim() 
 
  if t >= xmax: 
    ax.set_xlim(xmin,2*xmax) 
    ax.figure.canvas.draw() 
  line.set_data(xdata,ydata) 
 
  return line,# 每隔10秒调用函数run,run的参数为函数data_gen,# 表示图形只更新需要绘制的元素 
ani = animation.FuncAnimation(fig,run,blit=True,interval=10,repeat=False) 
plt.show() 

再看下面的例子:

# -*- coding: utf-8 -*- 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
 
#第一个参数必须为framenum 
def update_line(num,data,line): 
  line.set_data(data[...,:num]) 
  return line,fig1 = plt.figure() 
 
data = np.random.rand(2,15) 
l,= plt.plot([],'r-') 
plt.xlim(0,1) 
plt.ylim(0,1) 
plt.xlabel('x') 
plt.title('test') 
 
#framenum从1增加大25后,返回再次从1增加到25,再返回... 
line_ani = animation.FuncAnimation(fig1,update_line,25,fargs=(data,l),interval=50,blit=True) 
 
#等同于 
#line_ani = animation.FuncAnimation(fig1,frames=25,#  interval=50,blit=True) 
 
#忽略frames参数,framenum会从1一直增加下去知道无穷 
#由于frame达到25以后,数据不再改变,所以你会发现到达25以后图形不再变化了 
#line_ani = animation.FuncAnimation(fig1,blit=True) 
 
plt.show() 

总结

以上就是本文关于matplotlib绘制动画代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读