加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

Python编程实现的简单神经网络算法示例

发布时间:2020-12-17 07:30:14 所属栏目:Python 来源:网络整理
导读:本篇章节讲解Python编程实现的简单神经网络算法。供大家参考研究具体如下: python实现二层神经网络 包括输入层和输出层 # -*- coding:utf-8 -*-#! python2import numpy as np#sigmoid functiondef nonlin(x,deriv = False): if(deriv == True): r

本篇章节讲解Python编程实现的简单神经网络算法。分享给大家供大家参考,具体如下:

python实现二层神经网络

包括输入层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
#sigmoid function
def nonlin(x,deriv = False):
 if(deriv == True):
  return x*(1-x)
 return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,1],[0,1,[1,1]])
#output dataset
y = np.array([[0,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
print "编程小技巧测试结果:"
for iter in xrange(100000):
 l0 = x       #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
 l1_error = y-l1
 l1_delta = l1_error*nonlin(l1,True)
 syn0 += np.dot(l0.T,l1_delta)
print "outout after Training:"
print l1

这里,

l0:输入层
l1:输出层
syn0:初始权值
l1_error:误差
l1_delta:误差校正系数
func nonlin:sigmoid函数

这里迭代次数为100时,预测结果为

迭代次数为1000时,预测结果为:

迭代次数为10000,预测结果为:

迭代次数为100000,预测结果为:

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
def nonlin(x,deriv = False):
 if(deriv == True):
  return x*(1-x)
 else:
  return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
print "编程小技巧测试结果:"
for j in range(60000):
 l0 = X      #the first layer,and the hidden layer
 l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
 l2_error = y-l2  #the hidden-output layer error
 if(j%10000) == 0:
  print "Error:"+str(np.mean(l2_error))
 l2_delta = l2_error*nonlin(l2,deriv = True)
 l1_error = l2_delta.dot(syn1.T)  #the first-hidden layer error
 l1_delta = l1_error*nonlin(l1,deriv = True)
 syn1 += l1.T.dot(l2_delta)
 syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2

运行结果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • Python实现的人工神经网络算法示例【基于反向传播算法】
  • python实现神经网络感知器算法
  • Python实现的递归神经网络简单示例
  • Python基于numpy灵活定义神经网络结构的方法
  • 神经网络理论基础及Python实现详解
  • Python实现感知器模型、两层神经网络
  • Python与人工神经网络:使用神经网络识别手写图像介绍
  • python机器学习之神经网络(一)
  • python机器学习之神经网络(三)
  • python机器学习之神经网络(二)
  • 用Python从零实现贝叶斯分类器的机器学习的教程
  • 机器学习python实战之决策树

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读