tensorflow建立一个简单的神经网络的方法
发布时间:2020-12-17 07:27:55 所属栏目:Python 来源:网络整理
导读:本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。 如何添加一层网络 代码如下: def add_layer(inputs,in_size,out_size,activation_function=None): # add one more layer and return the output of this layer Weights
本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。 如何添加一层网络 代码如下: def add_layer(inputs,in_size,out_size,activation_function=None): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs,Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs 注意该函数中是xW+b,而不是Wx+b。所以要注意乘法的顺序。x应该定义为[类别数量, 数据数量], W定义为[数据类别,类别数量]。 创建一些数据 # Make up some real data x_data = np.linspace(-1,1,300)[:,np.newaxis] noise = np.random.normal(0,0.05,x_data.shape) y_data = np.square(x_data) - 0.5 + noise numpy的linspace函数能够产生等差数列。start,stop决定等差数列的起止值。endpoint参数指定包不包括终点值。 numpy.linspace(start,stop,num=50,endpoint=True,retstep=False,dtype=None)[source] Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples,calculated over the interval [start,stop]. noise函数为添加噪声所用,这样二次函数的点不会与二次函数曲线完全重合。 numpy的newaxis可以新增一个维度而不需要重新创建相应的shape在赋值,非常方便,如上面的例子中就将x_data从一维变成了二维。 添加占位符,用作输入 # define placeholder for inputs to network xs = tf.placeholder(tf.float32,[None,1]) ys = tf.placeholder(tf.float32,1]) 添加隐藏层和输出层 # add hidden layer l1 = add_layer(xs,10,activation_function=tf.nn.relu) # add output layer prediction = add_layer(l1,activation_function=None) 计算误差,并用梯度下降使得误差最小 # the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) 完整代码如下: from __future__ import print_function import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs,Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs # Make up some real data x_data = np.linspace(-1,x_data.shape) y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network xs = tf.placeholder(tf.float32,1]) # add hidden layer l1 = add_layer(xs,activation_function=None) # the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) # plot the real data fig = plt.figure() ax = fig.add_subplot(1,1) ax.scatter(x_data,y_data) plt.ion() plt.show() for i in range(1000): # training sess.run(train_step,feed_dict={xs: x_data,ys: y_data}) if i % 50 == 0: # to visualize the result and improvement try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction,feed_dict={xs: x_data}) # plot the prediction lines = ax.plot(x_data,prediction_value,'r-',lw=5) plt.pause(0.1) 运行结果: 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。 您可能感兴趣的文章:
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |