Python从零开始创建区块链
作者认为最快的学习区块链的方式是自己创建一个,本文就跟随作者用Python来创建一个区块链。 对数字货币的崛起感到新奇的我们,并且想知道其背后的技术――区块链是怎样实现的。 但是完全搞懂区块链并非易事,我喜欢在实践中学习,通过写代码来学习技术会掌握得更牢固。通过构建一个区块链可以加深对区块链的理解。 准备工作 本文要求读者对Python有基本的理解,能读写基本的Python,并且需要对HTTP请求有基本的了解。 我们知道区块链是由区块的记录构成的不可变、有序的链结构,记录可以是交易、文件或任何你想要的数据,重要的是它们是通过哈希值(hashes)链接起来的。 如果你还不是很了解哈希,可以查看这篇文章 环境准备 环境准备,确保已经安装Python3.6+,pip,Flask,requests 安装方法: pip install Flask==0.12.2 requests==2.18.4 同时还需要一个HTTP客户端,比如Postman,cURL或其它客户端。 参考源代码(原代码在我翻译的时候,无法运行,我fork了一份,修复了其中的错误,并添加了翻译,感谢star) 开始创建Blockchain 新建一个文件 blockchain.py,本文所有的代码都写在这一个文件中,可以随时参考源代码 Blockchain类 首先创建一个Blockchain类,在构造函数中创建了两个列表,一个用于储存区块链,一个用于储存交易。 以下是Blockchain类的框架: class Blockchain(object): def __init__(self): self.chain = [] self.current_transactions = [] def new_block(self): # Creates a new Block and adds it to the chain pass def new_transaction(self): # Adds a new transaction to the list of transactions pass @staticmethod def hash(block): # Hashes a Block pass @property def last_block(self): # Returns the last Block in the chain pass Blockchain类用来管理链条,它能存储交易,加入新块等,下面我们来进一步完善这些方法。 块结构 每个区块包含属性:索引(index),Unix时间戳(timestamp),交易列表(transactions),工作量证明(稍后解释)以及前一个区块的Hash值。 以下是一个区块的结构: block = { 'index': 1,'timestamp': 1506057125.900785,'transactions': [ { 'sender': "8527147fe1f5426f9dd545de4b27ee00",'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f",'amount': 5,} ],'proof': 324984774000,'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824" } 到这里,区块链的概念就清楚了,每个新的区块都包含上一个区块的Hash,这是关键的一点,它保障了区块链不可变性。如果攻击者破坏了前面的某个区块,那么后面所有区块的Hash都会变得不正确。 加入交易 接下来我们需要添加一个交易,来完善下new_transaction方法 class Blockchain(object): ... def new_transaction(self,sender,recipient,amount): """ 生成新交易信息,信息将加入到下一个待挖的区块中 :param sender: <str> Address of the Sender :param recipient: <str> Address of the Recipient :param amount: <int> Amount :return: <int> The index of the Block that will hold this transaction """ self.current_transactions.append({ 'sender': sender,'recipient': recipient,'amount': amount,}) return self.last_block['index'] + 1 方法向列表中添加一个交易记录,并返回该记录将被添加到的区块(下一个待挖掘的区块)的索引,等下在用户提交交易时会有用。 创建新块 当Blockchain实例化后,我们需要构造一个创世块(没有前区块的第一个区块),并且给它加上一个工作量证明。 为了构造创世块,我们还需要完善new_block(),new_transaction() 和hash() 方法: import hashlib import json from time import time class Blockchain(object): def __init__(self): self.current_transactions = [] self.chain = [] # Create the genesis block self.new_block(previous_hash=1,proof=100) def new_block(self,proof,previous_hash=None): """ 生成新块 :param proof: <int> The proof given by the Proof of Work algorithm :param previous_hash: (Optional) <str> Hash of previous Block :return: <dict> New Block """ block = { 'index': len(self.chain) + 1,'timestamp': time(),'transactions': self.current_transactions,'proof': proof,'previous_hash': previous_hash or self.hash(self.chain[-1]),} # Reset the current list of transactions self.current_transactions = [] self.chain.append(block) return block def new_transaction(self,amount): """ 生成新交易信息,信息将加入到下一个待挖的区块中 :param sender: <str> Address of the Sender :param recipient: <str> Address of the Recipient :param amount: <int> Amount :return: <int> The index of the Block that will hold this transaction """ self.current_transactions.append({ 'sender': sender,}) return self.last_block['index'] + 1 @property def last_block(self): return self.chain[-1] @staticmethod def hash(block): """ 生成块的 SHA-256 hash值 :param block: <dict> Block :return: <str> """ # We must make sure that the Dictionary is Ordered,or we'll have inconsistent hashes block_string = json.dumps(block,sort_keys=True).encode() return hashlib.sha256(block_string).hexdigest() 通过上面的代码和注释可以对区块链有直观的了解,接下来我们看看区块是怎么挖出来的。 理解工作量证明 新的区块依赖工作量证明算法(PoW)来构造。PoW的目标是找出一个符合特定条件的数字,这个数字很难计算出来,但容易验证。这就是工作量证明的核心思想。 为了方便理解,举个例子: 假设一个整数 x 乘以另一个整数 y 的积的 Hash 值必须以 0 结尾,即 hash(x * y) = ac23dc…0。设变量 x = 5,求 y 的值? 用Python实现如下: from hashlib import sha256 x = 5 y = 0 # y未知 while sha256(f'{x*y}'.encode()).hexdigest()[-1] != "0": y += 1 print(f'The solution is y = {y}') 结果是y=21. 因为: hash(5 * 21) = 1253e9373e...5e3600155e860 在比特币中,使用称为Hashcash的工作量证明算法,它和上面的问题很类似。矿工们为了争夺创建区块的权利而争相计算结果。通常,计算难度与目标字符串需要满足的特定字符的数量成正比,矿工算出结果后,会获得比特币奖励。 实现工作量证明 让我们来实现一个相似PoW算法,规则是:寻找一个数 p,使得它与前一个区块的 proof 拼接成的字符串的 Hash 值以 4 个零开头。 import hashlib import json from time import time from uuid import uuid4 class Blockchain(object): ... def proof_of_work(self,last_proof): """ 简单的工作量证明: - 查找一个 p' 使得 hash(pp') 以4个0开头 - p 是上一个块的证明,p' 是当前的证明 :param last_proof: <int> :return: <int> """ proof = 0 while self.valid_proof(last_proof,proof) is False: proof += 1 return proof @staticmethod def valid_proof(last_proof,proof): """ 验证证明: 是否hash(last_proof,proof)以4个0开头? :param last_proof: <int> Previous Proof :param proof: <int> Current Proof :return: <bool> True if correct,False if not. """ guess = f'{last_proof}{proof}'.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == "0000" 衡量算法复杂度的办法是修改零开头的个数。使用4个来用于演示,你会发现多一个零都会大大增加计算出结果所需的时间。 现在Blockchain类基本已经完成了,接下来使用HTTP requests来进行交互。 Blockchain作为API接口 我们将使用Python Flask框架,这是一个轻量Web应用框架,它方便将网络请求映射到 Python函数,现在我们来让Blockchain运行在基于Flask web上。 我们将创建三个接口: /transactions/new 创建一个交易并添加到区块 创建节点 我们的“Flask服务器”将扮演区块链网络中的一个节点。我们先添加一些框架代码: import hashlib import json from textwrap import dedent from time import time from uuid import uuid4 from flask import Flask class Blockchain(object): ... # Instantiate our Node app = Flask(__name__) # Generate a globally unique address for this node node_identifier = str(uuid4()).replace('-','') # Instantiate the Blockchain blockchain = Blockchain() @app.route('/mine',methods=['GET']) def mine(): return "We'll mine a new Block" @app.route('/transactions/new',methods=['POST']) def new_transaction(): return "We'll add a new transaction" @app.route('/chain',methods=['GET']) def full_chain(): response = { 'chain': blockchain.chain,'length': len(blockchain.chain),} return jsonify(response),200 if __name__ == '__main__': app.run(host='0.0.0.0',port=5000) 简单的说明一下以上代码: 发送交易 发送到节点的交易数据结构如下: { "sender": "my address","recipient": "someone else's address","amount": 5 } 之前已经有添加交易的方法,基于接口来添加交易就很简单了 import hashlib import json from textwrap import dedent from time import time from uuid import uuid4 from flask import Flask,jsonify,request ... @app.route('/transactions/new',methods=['POST']) def new_transaction(): values = request.get_json() # Check that the required fields are in the POST'ed data required = ['sender','recipient','amount'] if not all(k in values for k in required): return 'Missing values',400 # Create a new Transaction index = blockchain.new_transaction(values['sender'],values['recipient'],values['amount']) response = {'message': f'Transaction will be added to Block {index}'} return jsonify(response),201 挖矿 挖矿正是神奇所在,它很简单,做了一下三件事:
import hashlib import json from time import time from uuid import uuid4 from flask import Flask,request ... @app.route('/mine',methods=['GET']) def mine(): # We run the proof of work algorithm to get the next proof... last_block = blockchain.last_block last_proof = last_block['proof'] proof = blockchain.proof_of_work(last_proof) # 给工作量证明的节点提供奖励. # 发送者为 "0" 表明是新挖出的币 blockchain.new_transaction( sender="0",recipient=node_identifier,amount=1,) # Forge the new Block by adding it to the chain block = blockchain.new_block(proof) response = { 'message': "New Block Forged",'index': block['index'],'transactions': block['transactions'],'proof': block['proof'],'previous_hash': block['previous_hash'],200 注意交易的接收者是我们自己的服务器节点,我们做的大部分工作都只是围绕Blockchain类方法进行交互。到此,我们的区块链就算完成了,我们来实际运行下 运行区块链 你可以使用cURL 或Postman 去和API进行交互 启动server: $ python blockchain.py * Runing on http://127.0.0.1:5000/ (Press CTRL+C to quit) 让我们通过请求 http://localhost:5000/mine 来进行挖矿 通过post请求,添加一个新交易 如果不是使用Postman,则用一下的cURL语句也是一样的: $ curl -X POST -H "Content-Type: application/json" -d '{ "sender": "d4ee26eee15148ee92c6cd394edd974e","recipient": "someone-other-address","amount": 5 }' "http://localhost:5000/transactions/new" 在挖了两次矿之后,就有3个块了,通过请求 http://localhost:5000/chain 可以得到所有的块信息。 { "chain": [ { "index": 1,"previous_hash": 1,"proof": 100,"timestamp": 1506280650.770839,"transactions": [] },{ "index": 2,"previous_hash": "c099bc...bfb7","proof": 35293,"timestamp": 1506280664.717925,"transactions": [ { "amount": 1,"recipient": "8bbcb347e0634905b0cac7955bae152b","sender": "0" } ] },{ "index": 3,"previous_hash": "eff91a...10f2","proof": 35089,"timestamp": 1506280666.1086972,"sender": "0" } ] } ],"length": 3 } 一致性(共识) 我们已经有了一个基本的区块链可以接受交易和挖矿。但是区块链系统应该是分布式的。既然是分布式的,那么我们究竟拿什么保证所有节点有同样的链呢?这就是一致性问题,我们要想在网络上有多个节点,就必须实现一个一致性的算法。 注册节点 在实现一致性算法之前,我们需要找到一种方式让一个节点知道它相邻的节点。每个节点都需要保存一份包含网络中其它节点的记录。因此让我们新增几个接口: /nodes/register 接收URL形式的新节点列表 ... from urllib.parse import urlparse ... class Blockchain(object): def __init__(self): ... self.nodes = set() ... def register_node(self,address): """ Add a new node to the list of nodes :param address: <str> Address of node. Eg. 'http://192.168.0.5:5000' :return: None """ parsed_url = urlparse(address) self.nodes.add(parsed_url.netloc) 我们用 set 来储存节点,这是一种避免重复添加节点的简单方法。 实现共识算法 前面提到,冲突是指不同的节点拥有不同的链,为了解决这个问题,规定最长的、有效的链才是最终的链,换句话说,网络中有效最长链才是实际的链。 我们使用一下的算法,来达到网络中的共识 ... import requests class Blockchain(object) ... def valid_chain(self,chain): """ Determine if a given blockchain is valid :param chain: <list> A blockchain :return: <bool> True if valid,False if not """ last_block = chain[0] current_index = 1 while current_index < len(chain): block = chain[current_index] print(f'{last_block}') print(f'{block}') print("n-----------n") # Check that the hash of the block is correct if block['previous_hash'] != self.hash(last_block): return False # Check that the Proof of Work is correct if not self.valid_proof(last_block['proof'],block['proof']): return False last_block = block current_index += 1 return True def resolve_conflicts(self): """ 共识算法解决冲突 使用网络中最长的链. :return: <bool> True 如果链被取代,否则为False """ neighbours = self.nodes new_chain = None # We're only looking for chains longer than ours max_length = len(self.chain) # Grab and verify the chains from all the nodes in our network for node in neighbours: response = requests.get(f'http://{node}/chain') if response.status_code == 200: length = response.json()['length'] chain = response.json()['chain'] # Check if the length is longer and the chain is valid if length > max_length and self.valid_chain(chain): max_length = length new_chain = chain # Replace our chain if we discovered a new,valid chain longer than ours if new_chain: self.chain = new_chain return True return False 第一个方法 valid_chain() 用来检查是否是有效链,遍历每个块验证hash和proof. 第2个方法 resolve_conflicts() 用来解决冲突,遍历所有的邻居节点,并用上一个方法检查链的有效性, 如果发现有效更长链,就替换掉自己的链 让我们添加两个路由,一个用来注册节点,一个用来解决冲突。 @app.route('/nodes/register',methods=['POST']) def register_nodes(): values = request.get_json() nodes = values.get('nodes') if nodes is None: return "Error: Please supply a valid list of nodes",400 for node in nodes: blockchain.register_node(node) response = { 'message': 'New nodes have been added','total_nodes': list(blockchain.nodes),201 @app.route('/nodes/resolve',methods=['GET']) def consensus(): replaced = blockchain.resolve_conflicts() if replaced: response = { 'message': 'Our chain was replaced','new_chain': blockchain.chain } else: response = { 'message': 'Our chain is authoritative','chain': blockchain.chain } return jsonify(response),200 你可以在不同的机器运行节点,或在一台机机开启不同的网络端口来模拟多节点的网络,这里在同一台机器开启不同的端口演示,在不同的终端运行一下命令,就启动了两个节点:http://localhost:5000 和 http://localhost:5001 pipenv run python blockchain.py pipenv run python blockchain.py -p 5001 然后在节点2上挖两个块,确保是更长的链,然后在节点1上访问接口/nodes/resolve,这时节点1的链会通过共识算法被节点2的链取代。 好啦,你可以邀请朋友们一起来测试你的区块链 本文主要内容翻译自Learn Blockchains by Building One 您可能感兴趣的文章:
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |