python中的矢量化球形bessel函数?
发布时间:2020-12-16 22:57:12 所属栏目:Python 来源:网络整理
导读:我注意到,顺序n和参数x jv(n,x)的 scipy.special 贝塞尔函数在x中被矢量化: 在[14]中:将scipy.special导入sp 在[16]中:sp.jv(1,范围(3))#n = 1,[x = 0,1,2] Out [16]:array([0.,0.44005059,0.57672481]) 但是没有相应的矢量化形式的球形贝塞尔函数,sp.sp
我注意到,顺序n和参数x jv(n,x)的
scipy.special 贝塞尔函数在x中被矢量化:
在[14]中:将scipy.special导入sp 但是没有相应的矢量化形式的球形贝塞尔函数,sp.sph_jn: In [19]: sp.sph_jn(1,range(3)) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-19-ea59d2f45497> in <module>() ----> 1 sp.sph_jn(1,range(3)) #n=1,3 value array /home/glue/anaconda/envs/fibersim/lib/python2.7/site-packages/scipy/special/basic.pyc in sph_jn(n,z) 262 """ 263 if not (isscalar(n) and isscalar(z)): --> 264 raise ValueError("arguments must be scalars.") 265 if (n != floor(n)) or (n < 0): 266 raise ValueError("n must be a non-negative integer.") ValueError: arguments must be scalars. 此外,球形贝塞尔函数在一次通过中计算N的所有阶数.因此,如果我想要参数x = 10的n = 5 Bessel函数,则返回n = 1,2,3,4,5.它实际上在一次传递中返回jn及其衍生物: In [21]: sp.sph_jn(5,10) Out[21]: (array([-0.05440211,0.07846694,0.07794219,-0.03949584,-0.10558929,-0.05553451]),array([-0.07846694,-0.0700955,0.05508428,0.09374053,0.0132988,-0.07226858])) 为什么API中存在这种不对称性,并且有没有人知道一个库将返回矢量化的球形贝塞尔函数,或者至少更快(即在cython中)? 解决方法
你可以编写一个cython函数来加速计算,你要做的第一件事是获取fortran函数SPHJ的地址,这里是如何在Python中执行此操作:
from scipy import special as sp sphj = sp.specfun.sphj import ctypes addr = ctypes.pythonapi.PyCObject_AsVoidPtr(ctypes.py_object(sphj._cpointer)) 然后你可以直接在Cython中调用fortran函数,注意我使用prange()来使用multicore来加速计算: %%cython -c-Ofast -c-fopenmp --link-args=-fopenmp from cpython.mem cimport PyMem_Malloc,PyMem_Free from cython.parallel import prange import numpy as np import cython from cpython cimport PyCObject_AsVoidPtr from scipy import special ctypedef void (*sphj_ptr) (const int *n,const double *x,const int *nm,const double *sj,const double *dj) nogil cdef sphj_ptr _sphj=<sphj_ptr>PyCObject_AsVoidPtr(special.specfun.sphj._cpointer) @cython.wraparound(False) @cython.boundscheck(False) def cython_sphj2(int n,double[::1] x): cdef int count = x.shape[0] cdef double * sj = <double *>PyMem_Malloc(count * sizeof(double) * (n + 1)) cdef double * dj = <double *>PyMem_Malloc(count * sizeof(double) * (n + 1)) cdef int * mn = <int *>PyMem_Malloc(count * sizeof(int)) cdef double[::1] res = np.empty(count) cdef int i if count < 100: for i in range(x.shape[0]): _sphj(&n,&x[i],mn + i,sj + i*(n+1),dj + i*(n+1)) res[i] = sj[i*(n+1) + n] #choose the element you want here else: for i in prange(count,nogil=True): _sphj(&n,dj + i*(n+1)) res[i] = sj[i*(n+1) + n] #choose the element you want here PyMem_Free(sj) PyMem_Free(dj) PyMem_Free(mn) return res.base 比较一下,这是在forloop中调用sphj()的Python函数: import numpy as np def python_sphj(n,x): sphj = special.specfun.sphj res = np.array([sphj(n,v)[1][n] for v in x]) return res 以下是10个元素的%timit结果: x = np.linspace(1,10) r1 = cython_sphj2(4,x) r2 = python_sphj(4,x) assert np.allclose(r1,r2) %timeit cython_sphj2(4,x) %timeit python_sphj(4,x) 结果: 10000 loops,best of 3: 21.5 μs per loop 10000 loops,best of 3: 28.1 μs per loop 以下是100000个元素的结果: x = np.linspace(1,100000) r1 = cython_sphj2(4,x) 结果: 10 loops,best of 3: 44.7 ms per loop 1 loops,best of 3: 231 ms per loop (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |