加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python – 功能散列多个分类功能(列)

发布时间:2020-12-16 22:24:44 所属栏目:Python 来源:网络整理
导读:我想将“Genre”功能散列为6列,并将“Publisher”分别添加到另外6列中.我想要下面的东西: Genre Publisher 0 1 2 3 4 5 0 1 2 3 4 5 0 Platform Nintendo 0.0 2.0 2.0 -1.0 1.0 0.0 0.0 2.0 2.0 -1.0 1.0 0.01 Racing Noir -1.0 0.0 0.0 0.0 0.0 -1.0 -1.0

我想将“Genre”功能散列为6列,并将“Publisher”分别添加到另外6列中.我想要下面的东西:

      Genre      Publisher  0    1    2    3    4    5      0    1    2    3    4    5 
0     Platform  Nintendo  0.0  2.0  2.0 -1.0  1.0  0.0    0.0  2.0  2.0 -1.0  1.0  0.0
1       Racing      Noir -1.0  0.0  0.0  0.0  0.0 -1.0   -1.0  0.0  0.0  0.0  0.0 -1.0
2       Sports     Laura -2.0  2.0  0.0 -2.0  0.0  0.0   -2.0  2.0  0.0 -2.0  0.0  0.0
3  Roleplaying      John -2.0  2.0  2.0  0.0  1.0  0.0   -2.0  2.0  2.0  0.0  1.0  0.0
4       Puzzle      John  0.0  1.0  1.0 -2.0  1.0 -1.0    0.0  1.0  1.0 -2.0  1.0 -1.0
5     Platform      Noir  0.0  2.0  2.0 -1.0  1.0  0.0    0.0  2.0  2.0 -1.0  1.0  0.0

以下代码执行我想要做的事情

import pandas as pd
d = {'Genre': ['Platform','Racing','Sports','Roleplaying','Puzzle','Platform'],'Publisher': ['Nintendo','Noir','Laura','John','Noir']}
df = pd.DataFrame(data=d)
from sklearn.feature_extraction import FeatureHasher
fh1 = FeatureHasher(n_features=6,input_type='string')
fh2 = FeatureHasher(n_features=6,input_type='string')
hashed_features1 = fh.fit_transform(df['Genre'])
hashed_features2 = fh.fit_transform(df['Publisher'])
hashed_features1 = hashed_features1.toarray()
hashed_features2 = hashed_features2.toarray()
pd.concat([df[['Genre','Publisher']],pd.DataFrame(hashed_features1),pd.DataFrame(hashed_features2)],axis=1)

这适用于上述两个功能,但如果我可以说40个分类功能,那么这种方法将是乏味的.还有其他办法吗?

最佳答案
哈希(更新)

假设某些功能中可能会显示新类别,则可以使用散列.只需2个便条:

>注意碰撞的可能性并相应地调整功能的数量
>在您的情况下,您希望单独散列每个功能

一个热矢量

如果每个要素的类别数量固定且不太大,请使用一个热编码.

我建议使用以下两种方法之一:

> sklearn.preprocessing.OneHotEncoder
> pandas.get_dummies

import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.feature_extraction import FeatureHasher
from sklearn.preprocessing import OneHotEncoder

df = pd.DataFrame({'feature_1': ['A','G','T','A'],'feature_2': ['cat','dog','elephant','zebra']})

# Approach 0 (Hashing per feature)
n_orig_features = df.shape[1]
hash_vector_size = 6
ct = ColumnTransformer([(f't_{i}',FeatureHasher(n_features=hash_vector_size,input_type='string'),i) for i in range(n_orig_features)])

res_0 = ct.fit_transform(df)  # res_0.shape[1] = n_orig_features * hash_vector_size

# Approach 1 (OHV)
res_1 = pd.get_dummies(df)

# Approach 2 (OHV)
res_2 = OneHotEncoder(sparse=False).fit_transform(df)

res_0:

array([[ 0.,0.,1.,-1.,-1.],[ 0.,2.,0.],-2.,-1.]])

res_1:

   feature_1_A  feature_1_G  feature_1_T  feature_2_cat  feature_2_dog  feature_2_elephant  feature_2_zebra
0            1            0            0              1              0                   0                0
1            0            1            0              0              1                   0                0
2            0            0            1              0              0                   1                0
3            1            0            0              0              0                   0                1

res_2:

array([[1.,[0.,[1.,1.]])

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读