加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python – 在numpy中索引3d网格数据的球形子集

发布时间:2020-12-16 21:36:53 所属栏目:Python 来源:网络整理
导读:我有一个带坐标的三维网格 x = linspace(0,Lx,Nx)y = linspace(0,Ly,Ny)z = linspace(0,Lz,Nz) 我需要在一个位置(x0,y0,z0)的某个半径R内索引点(即x [i],y [j],z [k]). N_i可能非常大.我可以做一个简单的循环来找到我需要的东西 points=[]i0,j0,k0 = floor(
我有一个带坐标的三维网格
x = linspace(0,Lx,Nx)
y = linspace(0,Ly,Ny)
z = linspace(0,Lz,Nz)

我需要在一个位置(x0,y0,z0)的某个半径R内索引点(即x [i],y [j],z [k]). N_i可能非常大.我可以做一个简单的循环来找到我需要的东西

points=[]
i0,j0,k0 = floor( (x0,z0)/grid_spacing )
Nr = (i0,k0)/grid_spacing + 2
for i in range(i0-Nr,i0+Nr):
    for j in range(j0-Nr,j0+Nr):
        for k in range(k0-Nr,k0+Nr):
            if norm(array([i,j,k])*grid_spacing - (x0,k0)) < cutoff:
                points.append((i,k))

但这很慢.是否有一种更自然/更快捷的方式来进行numpy这种类型的操作?

解决方法

这个怎么样:
import scipy.spatial as sp
x = np.linspace(0,Nx)
y = np.linspace(0,Ny)
z = np.linspace(0,Nz)

#Manipulate x,y,z here to obtain the dimensions you are looking for

center=np.array([x0,z0])

#First mask the obvious points- may actually slow down your calculation depending.
x=x[abs(x-x0)<cutoff]
y=y[abs(y-y0)<cutoff]
z=z[abs(z-z0)<cutoff]


#Generate grid of points
X,Y,Z=np.meshgrid(x,z)
data=np.vstack((X.ravel(),Y.ravel(),Z.ravel())).T

distance=sp.distance.cdist(data,center.reshape(1,-1)).ravel()
points_in_sphere=data[distance<cutoff]

而不是最后两行你应该能够做到:

tree=sp.cKDTree(data)
mask=tree.query_ball_point(center,cutoff)
points_in_sphere=data[mask]

如果您不想调用空间:

distance=np.power(np.sum(np.power(data-center,2),axis=1),.5)
points_in_sphere=data[distance<cutoff]

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读