加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Java > 正文

Comet 67E: ffort

发布时间:2020-12-15 07:40:55 所属栏目:Java 来源:网络整理
导读:题目传送门:Comet 67E。 用了个傻逼做法 A 了这题,欢迎观赏睿智做法! 题意简述: 题目说得很清楚了(这次是我不想写了)。 题解: 为了方便,令 (m) 为敌人数, (n) 为己方士兵种数。设 (mathbf{Ans}) 为答案,则有: [begin{aligned}mathbf{An

题目传送门:Comet 67E。

用了个傻逼做法 A 了这题,欢迎观赏睿智做法!

题意简述:

题目说得很清楚了(这次是我不想写了)。

题解:

为了方便,令 (m) 为敌人数,(n) 为己方士兵种数。设 (mathbf{Ans}) 为答案,则有:

[begin{aligned}mathbf{Ans}&=sum_{a=1}^{infty}([x^a]G)cdotbinom{a-1}{m-1}&=sum_{a=0}^{infty}!left([x^{a}]dfrac{G}{x}right)!cdotbinom{a}{hat m}&=frac{1}{hat m!}sum_{i=0}^{infty}([x^i]F)i^{underline{hat m}}end{aligned}]

意即枚举 (a) 为打出的伤害数,则将这些伤害分配给敌人的方法数为 (dbinom{a-1}{m-1})

其中 (G) 为给己方士兵分配伤害的方案数的 (mathbf{OGF}),即 (displaystyle G=prod_{i=1}^{n}left[mathbf{OGF}left{0,underset{b_i}{underbrace{1,ldots,1}}right}right]^{a_i})

([x^a]G) 就为将伤害分配给己方士兵的方案数。

接下来令 (hat m=m-1)(F=dfrac{G}{x}),变换求和指标并提出 (dfrac{1}{hat m!}),留下下降幂形式。


下降幂经常出现在多次求导后的多项式中,即 (displaystyle f^{(k)}(x)=sum_{i=k}^{infty}f_ii^{underline{k}}cdot x^{i-k})

那么 (displaystylesum_{i=0}^{infty}f_ii^{underline{hat m}}=f^{(hat m)}(1))

据此,则有:

[mathbf{Ans}=frac{1}{hat m!}F^{(m)}(1)]

考虑 (displaystyle F=frac{1}{x}prod_{i=1}^{n}left[mathbf{OGF}left{0,1}}right}right]^{a_i})(hat m) 阶导:

  • 对于 (displaystyle t=prod_{i=1}^{n}t_i)(k) 阶导,重复使用乘法法则 ((fg)'=f'g+fg') 即可得出:
  • (displaystyle t^{(k)}=sum_{a_1+a_2+cdots+a_n=k}binom{k}{a_{1ldots n}}prod_{i=1}^{n}t_i^{(a_i)}),其中 (dbinom{k}{a_{1ldots n}}) 即为多重组合数。
  • 从生成函数的角度看来,即 (displaystyle t^{(k)}=k![z^k]prod_{i=1}^{n}sum_{j=0}^{infty}frac{t_i^{(j)}}{j!}z^j),即每个 ({t_i^{(0)},t_i^{(1)},ldots}) 的二项卷积。

(f_i=mathbf{OGF}left{0,1}}right}) ,特别地 (f_0=dfrac{1}{x})(a_0=1),那么有 (displaystyle F=prod_{i=0}^{n}f_i^{a_i})

于是:

[begin{aligned}mathbf{Ans}&=frac{1}{hat m}F^{(m)}(1)&=frac{1}{hat m}left(hat m!left[z^{hat m}right]prod_{i=0}^{n}left(sum_{j=0}^{infty}frac{f_i^{(j)}}{j!}z^{j}right)^{a_i}right)(1)&=[z^m]prod_{i=0}^{n}left(sum_{j=0}^{infty}frac{f_i^{(j)}(1)}{j!}z^jright)^{a_i}end{aligned}]

因为 (ntimes mle 10^5),所以后面只要算出 (dfrac{f_i^{(j)}(1)}{j!})(0le ile n)(0le jle m)),然后多项式快速幂暴力乘即可。


接下来考虑如何计算 (dfrac{f_i^{(j)}(1)}{j!})

对于 (f_0=dfrac{1}{x}),有 (left(dfrac{1}{x}right)^{(k)}(1)=(-1)^kk!),所以 (dfrac{f_0^{(j)}(1)}{j!}=(-1)^j)

对于 (f_i=mathbf{OGF}left{0,1}}right}),稍加推导可以得到:

  • (f_i^{(0)}(1)),即 (f_i(1)),等于 (b_i)(显然)。
  • 对于 (jge1),有 (f_i^{(j)}(1)=dfrac{(b_i+1)^{underline{j+1}}}{j+1})(证明略),于是 (dfrac{f_i^{(j)}(1)}{j!}=dfrac{(b_i+1)^{underline{j+1}}}{(j+1)!}) 可以递推求出。

那么这题就做完了,代码如下,复杂度 (mathcal O(nmlog m))

#include <cstdio>
#include <algorithm>

typedef long long LL;
const int Mod = 998244353;
const int G = 3,iG = 332748118;
const int MS = 1 << 19;

inline int qPow(int b,int e) {
    int a = 1;
    for (; e; e >>= 1,b = (LL)b * b % Mod)
        if (e & 1) a = (LL)a * b % Mod;
    return a;
}

inline int gInv(int b) { return qPow(b,Mod - 2); }

int Inv[MS],Fac[MS],iFac[MS];

inline void Init(int N) {
    Fac[0] = 1;
    for (int i = 1; i < N; ++i) Fac[i] = (LL)Fac[i - 1] * i % Mod;
    iFac[N - 1] = gInv(Fac[N - 1]);
    for (int i = N - 1; i >= 1; --i) iFac[i - 1] = (LL)iFac[i] * i % Mod;
    for (int i = 1; i < N; ++i) Inv[i] = (LL)Fac[i - 1] * iFac[i] % Mod;
}

inline int Binom(int N,int M) {
    if (M < 0 || M > N) return 0;
    return (LL)Fac[N] * iFac[M] % Mod * iFac[N - M] % Mod;
}

int Sz,InvSz,R[MS];

inline int getB(int N) { int Bt = 0; while (1 << Bt < N) ++Bt; return Bt; }

inline void InitFNTT(int N) {
    int Bt = getB(N);
    if (Sz == (1 << Bt)) return ;
    Sz = 1 << Bt,InvSz = Mod - (Mod - 1) / Sz;
    for (int i = 1; i < Sz; ++i) R[i] = R[i >> 1] >> 1 | (i & 1) << (Bt - 1);
}

inline void FNTT(int *A,int Ty) {
    for (int i = 0; i < Sz; ++i) if (R[i] < i) std::swap(A[R[i]],A[i]);
    for (int j = 1,j2 = 2; j < Sz; j <<= 1,j2 <<= 1) {
        int wn = qPow(~Ty ? G : iG,(Mod - 1) / j2),w,X,Y;
        for (int i = 0,k; i < Sz; i += j2) {
            for (k = 0,w = 1; k < j; ++k,w = (LL)w * wn % Mod) {
                X = A[i + k],Y = (LL)w * A[i + j + k] % Mod;
                A[i + k] -= (A[i + k] = X + Y) >= Mod ? Mod : 0;
                A[i + j + k] += (A[i + j + k] = X - Y) < 0 ? Mod : 0;
            }
        }
    }
    if (!~Ty) for (int i = 0; i < Sz; ++i) A[i] = (LL)A[i] * InvSz % Mod;
}

inline void PolyConv(int *_A,int N,int *_B,int M,int *_C) {
    static int A[MS],B[MS];
    InitFNTT(N + M - 1);
    for (int i = 0; i < N; ++i) A[i] = _A[i];
    for (int i = N; i < Sz; ++i) A[i] = 0;
    for (int i = 0; i < M; ++i) B[i] = _B[i];
    for (int i = M; i < Sz; ++i) B[i] = 0;
    FNTT(A,1),FNTT(B,1);
    for (int i = 0; i < Sz; ++i) A[i] = (LL)A[i] * B[i] % Mod;
    FNTT(A,-1);
    for (int i = 0; i < N + M - 1; ++i) _C[i] = A[i];
}

inline void PolyInv(int *_A,int *_B) {
    static int A[MS],B[MS],tA[MS],tB[MS];
    for (int i = 0; i < N; ++i) A[i] = _A[i];
    for (int i = N,B = getB(N); i < 1 << B; ++i) A[i] = 0;
    B[0] = gInv(A[0]);
    for (int L = 1; L < N; L <<= 1) {
        int L2 = L << 1,L4 = L << 2;
        InitFNTT(L4);
        for (int i = 0; i < L2; ++i) tA[i] = A[i];
        for (int i = L2; i < Sz; ++i) tA[i] = 0;
        for (int i = 0; i < L; ++i) tB[i] = B[i];
        for (int i = L; i < Sz; ++i) tB[i] = 0;
        FNTT(tA,FNTT(tB,1);
        for (int i = 0; i < Sz; ++i) tB[i] = tB[i] * (2 - (LL)tA[i] * tB[i] % Mod + Mod) % Mod;
        FNTT(tB,-1);
        for (int i = 0; i < L2; ++i) B[i] = tB[i];
    }
    for (int i = 0; i < N; ++i) _B[i] = B[i];
}

inline void PolyLn(int *_A,int *_B) {
    static int tA[MS],tB[MS];
    for (int i = 1; i < N; ++i) tA[i - 1] = (LL)_A[i] * i % Mod;
    PolyInv(_A,N - 1,tB);
    InitFNTT(N + N - 3);
    for (int i = N - 1; i < Sz; ++i) tA[i] = 0;
    for (int i = N - 1; i < Sz; ++i) tB[i] = 0;
    FNTT(tA,1);
    for (int i = 0; i < Sz; ++i) tA[i] = (LL)tA[i] * tB[i] % Mod;
    FNTT(tA,-1);
    _B[0] = 0;
    for (int i = 1; i < N; ++i) _B[i] = (LL)tA[i - 1] * Inv[i] % Mod;
}

inline void PolyExp(int *_A,B = getB(N); i < 1 << B; ++i) A[i] = 0;
    B[0] = 1;
    for (int L = 1; L < N; L <<= 1) {
        int L2 = L << 1,L4 = L << 2;
        for (int i = L; i < L2; ++i) B[i] = 0;
        PolyLn(B,L2,tA);
        InitFNTT(L4);
        for (int i = 0; i < L2; ++i) tA[i] = (!i + A[i] - tA[i] + Mod) % Mod;
        for (int i = L2; i < Sz; ++i) tA[i] = 0;
        for (int i = 0; i < L; ++i) tB[i] = B[i];
        for (int i = L; i < Sz; ++i) tB[i] = 0;
        FNTT(tA,1);
        for (int i = 0; i < Sz; ++i) tA[i] = (LL)tA[i] * tB[i] % Mod;
        FNTT(tA,-1);
        for (int i = 0; i < L2; ++i) B[i] = tA[i];
    }
    for (int i = 0; i < N; ++i) _B[i] = B[i];
}

int M,N;
int Ans[MS],Tmp[MS];

int main() {
    scanf("%d%d",&M,&N),--M;
    Init(M + 2);
    for (int i = 0; i <= M; ++i) Ans[i] = i & 1 ? Mod - 1 : 1;
    while (N--) {
        int a,b;
        scanf("%d%d",&a,&b);
        Tmp[0] = 1;
        int coef = (LL)(b + 1) * gInv(b) % Mod;
        for (int i = 1; i <= M; ++i) {
            coef = (LL)coef * (b - i + 1) % Mod * Inv[i + 1] % Mod;
            Tmp[i] = coef;
        }
        PolyLn(Tmp,M + 1,Tmp);
        for (int i = 0; i <= M; ++i) Tmp[i] = (LL)Tmp[i] * a % Mod;
        PolyExp(Tmp,Tmp);
        int qwq = qPow(b,a);
        for (int i = 0; i <= M; ++i) Tmp[i] = (LL)Tmp[i] * qwq % Mod;
        PolyConv(Ans,Tmp,Ans);
    }
    int tAns = Ans[M];
    printf("%dn",tAns);
    return 0;
}

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读