加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Java > 正文

HashMap源码分析

发布时间:2020-12-14 06:39:30 所属栏目:Java 来源:网络整理
导读:h3 id="1hashmap特点"1.HashMap特点 key和value都允许为null 实现方式:数组+链表+红黑树 非线程安全(这一点区分于HashTable,二者除去这一点,其它基本一致) rehash条件:entry个数>负载因子*capacity 负载因子默认值:0.75 容量(bucket个数)默认值:16

<h3 id="1hashmap特点">1.HashMap特点

  • key和value都允许为null
  • 实现方式:数组+链表+红黑树
  • 非线程安全(这一点区分于HashTable,二者除去这一点,其它基本一致)
  • rehash条件:entry个数>负载因子*capacity
  • 负载因子默认值:0.75
  • 容量(bucket个数)默认值:16
  • 链表转为红黑树阈值:8
  • 红黑树转为链表阈值:6
  • bucket数组被转为树的阈值:64
  • 扩容倍数:2
  • 支持序列化、浅拷贝clone
  • 两个参数会影响HashMap实例的性能:
    • 初始化capacity的大小。capacity是指:哈希表拥有的bucket的数量
    • 负载因子的大小.
  • 其迭代器执行时间与2个因素有关:
    • bucket的个数,bucket个数就是数组长度
    • 当前map中存储元素个数

package sourcecode.analysis;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.
;
import java.util.function.*;
import java.util.function.BiFunction;
import java.util.function.Consumer;

/**

  • Created by caoxiaohong on 17/11/9 20:30.
    */

/**

  • HashMap是实现了Map接口的哈希表.HashMap实现了map所有该有的操作.并且key和value都允许为null.
  • (HashMap和HashTable唯一不同的是:前者是非线程安全的,后者是线程安全的.因此除去线程安全这一点,我们可以粗略的认为HashMap
  • 和HashTable是等价的.)
  • HashMap存储的元素是没有顺序性的;特别是:不能保证现有的顺序随着时间的推移不会发生变化.
  • 如果哈希函数能够把存储的元素均匀的分配到各个bucket里面,那么get和put操作的时间性能都是常数级别的.
  • 关于HashMap的迭代器,它的执行时间和两个因素有关,且成比例增长:
  • (1)当前HashMap实例有几个bucket.
  • (2)当前HashMap实例究竟存储了几个元素.
  • 所以,如果在一个应用中经常用到迭代器的话,那么将HashMap实例的capacity设置的太大(也就是负载因子过低),这是不合理的.因为这会严重影响其性能.
  • 有两个参数会影响HashMap实例的性能:(1)初始化capacity的大小.(2)负载因子的大小.
  • capacity是指:哈希表拥有的bucket的数量.而初始化的capacity就是哈希表创建时的capacity.
  • 负载因子是指:它其实是HashMap实例的capacity自动增长的指标.
  • 当哈希表的条目超过了负载因子和capacity二者的乘积,哈希表会被rehash(也就是说,哈希表的内部数据结构会被重建),这样才能保证哈希表的bucket
  • 的个数大约增长为之前的2倍大小.
  • 通用规则是:默认的负载因子大小为0.75.这个数字是在时间和空间的损耗上面做了一个平衡的值.较大的负载因子虽然会提升空间利用率,* 但是却提升了查找成本(查找成本在HashMap类中主要体现的操作就是get和put).当初始化一个HashMap的capacity的时候,条目的个数和负载因子
  • 这两个因素都应该被考虑进去,从而尽量减少rehash的次数.如果初始化的capacity比最多条目数除以负载因子的值还大,那么rehash的操作
  • 绝不会出现.
  • 如果我们确定一定会在HashMap实例中存储很多的条目,那么在HashMap初始化时设置一个比较大的capacity要比设置一个小的capacity而让其
  • 后期自动增长的效率高得多.
  • 注意:HashMap类是非线程安全的.
  • 如果多个线程同时操作一个HashMap实例,并且至少一个线程修改了HashMap实例的结构,要想实现线程安全,那么必须要有额外的措施来保证这一点.
  • (结构修改是指:为HashMap实例add或者delete一个或者多个映射;仅仅更改某个已经存在的key对应的value值,这并不是结构的改变.)
  • 这通常是通过同步一些map已经封装的对象,来实现线程同步的.
  • 如果找不到map已经封装好的对象,那么就需要使用Collections.synchronizedMap的方法来包装map.
  • 这一包装操作最好在创建HashMap实例的时候就完成,以防止在操作map的时候发生一些偶然的非线程安全的问题.
  • 创建时的包装方式如下:
  • Map m = Collections.synchronizedMap(new HashMap(...));
  • 所有通过这个类的"集合视图方法"返回的迭代器:(如果通过迭代器遍历的过程中遇到问题,)都会尽可能早的抛出异常的.
  • 也就说:如果HashMap实例在创建完迭代器后,无论以何种方式,只要其结构发生了改变,迭代器都会抛出异常ConcurrentModificationException,* 当然唯一例外的情况就是:迭代器自己的remove方法,虽然会改变HashMap实例的结构,但是这并不会导致迭代器抛出异常.(为什么呢?通过
  • 后面的源码,我们自然可以理解到.因为迭代器自己的remove方法,始终删除的HashMap实例上一次刚刚访问的元素,而且更新了下一次访问的游标,所以
  • 这就保证了不用抛出异常.)
  • 注意:迭代器的尽可能早的抛出异常的功能,并不是完全得到保障的.一般来讲,在出现了非线程安全的修改问题时,没有硬性保障一定会抛出异常.
  • 迭代器尽可能早的抛出异常是说:它只是会尽力做到这一点.
  • 因此,如果一个程序完全依赖于这一异常的正确性,这可能会出现问题:迭代器的这一功能只能用来去查找一些bug.
  • @see Object#hashCode()
  • @see Collection
  • @see Map
  • @see TreeMap
  • @see Hashtable
  • @since 1.2
    */

/**

  • 类名分析:
  • (1)继承类:AbstractMap<K,V>
  • (2)实现接口:
  • Map<K,V>:
  • Cloneable:表示这个类可以调用Object的clone()方法,但是这个接口里面并没有提供任何方法,所以要想实现对象HashMap的浅拷贝,则需要在此类中
  • 手动写出clone()方法的拷贝过程.
  • Serializable:表示HashMap可以序列化,反序列化.
    */

public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>,Cloneable,Serializable {
private static final long serialVersionUID = 362498820763181265L;
/**

  • 变量定义了:HashMap初始化容量的大小为:16.
  • 变量定义的特征:
  • 1.static final类型;
  • 2.默认大小必须为2的整数次幂;
    */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
 * 变量定义了:HashMap初始化最大的容量.这个变量什么时候起作用呢?就是在初始化HashMap时,如果传入构造器中的参数>(1<<30),则初始化
 * HashMap时,不能使用传入参数,而使用变量MAXIMUM_CAPACITY.
 * 变量定义特征:
 * 1.static final类型;
 * 2.1<<30==1073741824;
 *
 */
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * HashMap初始化时的默认负载因子为:0.75;
 * 当然负载因子也可以在构造器参数中进行指定.
 * 变量定义特征:
 * 1.static final类型;
 * 2.(0,1)的取值范围;
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
 * 将链表转为红黑树的阈值
 * 当一个元素在被添加时,如果链表中node的个数已经达到了8个,链表将转为红黑树形式.
 * 这个值的设定必须大于2,且至少为8,显然源码中已经设定为8.原因是:
 */
static final int TREEIFY_THRESHOLD = 8;

/**
 * 将红黑树转为链表的阈值
 * 红黑树中node个数必须小于阈值.
 * 阈值最大为6,这里阈值设定为6
 */
static final int UNTREEIFY_THRESHOLD = 6;

/**
 * 桶被转为树的最小容量.
 * (桶的结构变化方式有两种:resize方式+转为树)
 * 为了避免桶的机构在选择变化方式时产生冲突,这一容量的设定值至少为32,那么可以看到在源码中已经设定这个值为64.
 */
static final int MIN_TREEIFY_CAPACITY = 64;

/**
 * Basic hash bin node,used for most entries.  (See below for
 * TreeNode subclass,and in LinkedHashMap for its Entry subclass.)
 * 基本哈希bin节点,用于大多数条目.
 *
 */
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash,K key,V value,Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }

    //条目的哈希值=key和value的哈希值求异或
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    //equals方法还是正常的判定
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key,e.getKey()) &amp;&amp;
                    Objects.equals(value,e.getValue()))
                return true;
        }
        return false;
    }
}

/* ---------------- Static utilities 静态工具类-------------- */

/**
 *  计算key的哈希值h,再将h和(h无符号右移16位)进行异或.因为table使用了2的整数次幂的掩码,所以在当前
 *  掩码二进制位处的哈希值集合,总会发生碰撞.(在已知的例子中是Float键的集合,在小table中保持连续的整数)
 *  所以我们采取了h>>>>16的措施,使得这种影响从高位转移到低位.为什么选择右移16位,而不是18位等等,这其实是在速度,实用性,*  性能方面作出的一个权衡.因为很多哈希集合已经分配的很合理了(这样的哈希集合是不会从h>>>16位得到好处的),同时,因为
 *  我们使用红黑树来处理容器中大量集合的碰撞问题,为了降低系统损耗,我们采用了最廉价的方式,即对更改的二进制位进行了异或操作,*  同时消除了由于表边界而不会用于索引计算的最高位的影响.
 */
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

/**
 * 如果传入参数x实现了Comparable接口,则返回类x,否则返回null.
 */
static Class<?> comparableClassFor(Object x) {
    if (x instanceof java.lang.Comparable) {
        Class<?> c; Type[] ts,as; Type t; ParameterizedType p;
        //如果x是String类型,则返回String
        if ((c = x.getClass()) == String.class) // bypass checks
            return c;
        //如果c实现的接口不为空
        if ((ts = c.getGenericInterfaces()) != null) {
            for (int i = 0; i < ts.length; ++i) { //对实现接口进行遍历
                if (((t = ts[i]) instanceof ParameterizedType) &amp;&amp;
                        ((p = (ParameterizedType)t).getRawType() ==
                                java.lang.Comparable.class) &amp;&amp;
                        (as = p.getActualTypeArguments()) != null &amp;&amp;
                        as.length == 1 &amp;&amp; as[0] == c) // type arg is c
                    return c;
            }
        }
    }
    return null;
}

/**
 * Returns k.compareTo(x) if x matches kc (k's screened comparable
 * class),else 0.
 * 如果x和kc类型相同,则返回k.compareTo(x)结果;否则返回0.
 */
@SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
static int compareComparables(Class<?> kc,Object k,Object x) {
    return (x == null || x.getClass() != kc ? 0 :
            ((java.lang.Comparable)k).compareTo(x));
}

/**
 * Returns a power of two size for the given target capacity.
 * 返回一个2倍capacity的整数次幂.
 * 这是一个static final类型的变量
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

/* ---------------- Fields 域-------------- */

/**
 * table在第一次使用时,进行初始化,如果有必要会有resize的操作.
 * 当分配好大小后,table的大小总是2的整数次幂.
 * (我们还允许在某些操作中允许长度为零,以允许当前不需要的引导机制)
 *
 * transient类型变量,序列化时,table=null
 */
transient Node<K,V>[] table;

/**
 * 保存缓存的entrySet()。请注意,AbstractMap字段用于keySet()和values()
 * 序列化时,entrySet=null
 */
transient Set<Map.Entry<K,V>> entrySet;

/**
 * map中键值对的个数
 * 序列化时,size没有值
 */
transient int size;

/**
 * map结构的更改次数.结构更改是:键值对个数发生改变 or 其它改变map内部结构的操作,如resize时.
 * 这又是一个transient类型的域
 */
transient int modCount;

/**
 * 下一次resize的阈值大小:阈值=map容量*负载因子.(threshold=capacity*load factor)
 */
int threshold;

/**
 * 哈希表的负载因子
 * final类型字段,构造器给定后,不可更改
 * @serial
 */
final float loadFactor;

/* ---------------- Public operations -------------- */

/**
 * public实例构造器,参数指定了:map初始化时的容量+负载因子
 */
public HashMap(int initialCapacity,float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

/**
 * public实例构造器,参数指定:初始容量.
 * 通过调用上面的构造函数,负载因子为默认的0.75
 */
public HashMap(int initialCapacity) {
    this(initialCapacity,DEFAULT_LOAD_FACTOR);
}

/**
 * public实例构造器,无参数.
 * 默认的初始化容量为16 &amp;&amp; 负载因子为默认的0.75
 */
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/**
 * 创建一个新的HashMap,并用参数m来初始化其键值对.
 * 这个新的map负载因子为0.75,容量大小:以足够存放键值对为目标.
 */
public HashMap(Map<? extends K,? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m,false);//调用的就是下面的方法
}

/**
 * 这一方法实现了Map.putAll和Map构造器的功能.
 * 当初始化map时,evict值为false,其它时候为true.
 * 这是一个final类型的方法
 */
final void putMapEntries(Map<? extends K,? extends V> m,boolean evict) {
    //传入map中键值对的个数
    int s = m.size();
    //如果m中有键值对
    if (s > 0) {
        //如果table为null
        if (table == null) { // pre-size
            //初始化容量为ft=s/loadFactor+1.
            float ft = ((float)s / loadFactor) + 1.0F;
            //如果ft>MAXIMUM_CAPACITY,则令t=MAXIMUM_CAPACITY;否则令t=ft.
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                    (int)ft : MAXIMUM_CAPACITY);
            //如果t>阈值,更改阈值.将阈值更改为2t的整数次幂.
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        //如果m中键值对个数>阈值
        else if (s > threshold)
            resize();
        for (Map.Entry<? extends K,? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key),key,value,false,evict);
        }
    }
}

//不解释
public int size() {
    return size;
}
//不解释
public boolean isEmpty() {
    return size == 0;
}

/**
 * 就是map的get(key)方法.
 * 返回结果2种情况:null 或者 某个具体值.
 * 唯一需要注意的是:返回结果为null并不是说map中没有对应key的映射,因为HashMap中key和value都允许为null.
 * 这可能key本来对应的value就是null.
 * 如果区分到底是不存在这样的映射?还是说key对应的value就是null?-->containsKey()方法可以解决这个问题.
 */
public V get(Object key) {
    Node<K,V> e;
    //调用了getNode方法,参数为:key的哈希值和key
    return (e = getNode(hash(key),key)) == null ? null : e.value;
}

/**
 * 实现Map.get()及相关算法.
 * final类型方法.包级私有
 */
final Node<K,V> getNode(int hash,Object key) {
    Node<K,V>[] tab; Node<K,V> first,e; int n; K k;
    //赋值:tab=table  &amp;  n=tab.length  &amp;  first=tab[(n - 1) &amp; hash]]
    //table不为空 &amp; table长度>0 &amp; table[(n - 1) &amp; hash]]!=null
    if ((tab = table) != null &amp;&amp; (n = tab.length) > 0 &amp;&amp;
            (first = tab[(n - 1) &amp; hash]) != null) {
        //总是先检查first节点是否符合条件,这是从性能角度出发的,这一点要注意
        if (first.hash == hash &amp;&amp; // always check first node
                ((k = first.key) == key || (key != null &amp;&amp; key.equals(k))))
            return first;
        //e=first.next节点
        //next节点不为空
        if ((e = first.next) != null) {
            //如果first节点为红黑树节点,则采用红黑树的查找方式去找key对应的value,并返回
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash,key);
            //如果first节点为链表节点,则顺序查找key对应的value.
            do {
                if (e.hash == hash &amp;&amp;
                        ((k = e.key) == key || (key != null &amp;&amp; key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

/**
 * 如果map中包含对应的映射,则返回true;否则false.
 */
public boolean containsKey(Object key) {
    return getNode(hash(key),key) != null;
}

/**
 * map的put操作,如果map中已经有了key,则key对应的原来的value会被替换掉.
 * 调用了下面的final类型方法.
 */
public V put(K key,V value) {
    return putVal(hash(key),true);
}

/**
 * 实现了map.put()及其相关的方法.
 * @param onlyIfAbsent 为true时,则不覆盖key对应的value值,但是put在调用这个方法时,赋值false,说明覆盖原始value.
 * @param evict 为false时,table处于创建模式.
 */
final V putVal(int hash,boolean onlyIfAbsent,boolean evict) {
    Node<K,V> p; int n,i;
    /**如果table为null,或者table.length==0,通过调用resize()方法为table初始化大小.
     * tab=table或者tab = resize();
     * n=tab.length 或者 n=(tab = resize()).length
     */
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    /**如果first节点为null,则为tab[first=i]赋值.
     * p=tab[i = (n - 1) &amp; hash]
     */
    if ((p = tab[i = (n - 1) &amp; hash]) == null)
        tab[i] = newNode(hash,null);
    else {
        Node<K,V> e; K k;
        //如果p节点和插入节点的hash和key相同,则e=p.
        if (p.hash == hash &amp;&amp;
                ((k = p.key) == key || (key != null &amp;&amp; key.equals(k))))
            e = p;
        //如果p是红黑树节点,调用红黑树节点插入法.
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this,tab,hash,value);
        //如果p为链表节点
        else {
            for (int binCount = 0; ; ++binCount) {
                //链表结尾处插入节点
                if ((e = p.next) == null) {
                    p.next = newNode(hash,null);
                    //如果链表节点个数到达在插入新的节点后,达到转为红黑树的阈值,则还需要将此链表转为红黑树.
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab,hash);
                    break;
                }
                //如果插入节点和原链表中的某个key具有相同的hash且key相同,停止查找.
                if (e.hash == hash &amp;&amp;
                        ((k = e.key) == key || (key != null &amp;&amp; key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            //替换原value值
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    //map结构更改次数+1
    ++modCount;
    //键值对个数>阈值,更新table容量为原来2倍.这说明,HashMap扩容为原来2倍.
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

/**
 * 初始化table的大小或者将table的大小增大为两倍.
 * 如果table==null,将table的大小设置为指定阈值threshold大小;
 * 否则,因为我们使用的增长策略是2的整数次幂方式,table的容量在更改时,同一元素在table中的索引要么不变,要么移动到相对原位置
 * 而言,距离2的整数次幂的一个位置.
 * 最终返回table.
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap,newThr = 0;
    //如果原map容量>0
    if (oldCap > 0) {
        //如果原容量>=最大容量,更改阈值为Integer最大值,并返回原table,程序停止执行.
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        //为新阈值赋值:oldThr << 1
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &amp;&amp;
                oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    //如果原阈值>0
    else if (oldThr > 0) // initial capacity was placed in threshold
    //新阈值=原阈值
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    //如果新阈值==0
    if (newThr == 0) {
        //ft为新阈值
        float ft = (float)newCap * loadFactor;
        //新阈值赋值
        newThr = (newCap < MAXIMUM_CAPACITY &amp;&amp; ft < (float)MAXIMUM_CAPACITY ?
                (int)ft : Integer.MAX_VALUE);
    }
    //table阈值赋值
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    //table赋值
    table = newTab;
    //如果原table不为null
    if (oldTab != null) {
        //遍历旧table各个bucket
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            //如果原table[j]!=null
            if ((e = oldTab[j]) != null) {
                //将原table[j]处置为null,释放空间.
                oldTab[j] = null;
                //如果e无后继节点
                if (e.next == null)
                    //将e值付给新table的e对应的first节点
                    newTab[e.hash &amp; (newCap - 1)] = e;
                //e如果为红黑树类型节点
                else if (e instanceof TreeNode)
                    //重构红黑树结构,到新table中
                    ((TreeNode<K,V>)e).split(this,newTab,j,oldCap);
                //e如果为链表节点
                else { // preserve order
                    Node<K,V> loHead = null,loTail = null;
                    Node<K,V> hiHead = null,hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash &amp; oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

/**
 * 将桶数组table转为红黑树.
 */
final void treeifyBin(Node<K,V>[] tab,int hash) {
    int n,index; Node<K,V> e;
    //如果table为空或者桶数组table太小,不符合转为红黑树的条件.
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        //桶数组table扩容
        resize();
    //如果符合转为红黑树的条件,且hash对应的桶不为null
    else if ((e = tab[index = (n - 1) &amp; hash]) != null) {
        TreeNode<K,V> hd = null,tl = null;
        //遍历链表
        do {
            TreeNode<K,V> p = replacementTreeNode(e,null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}


//将指定m中的键值对映射到调用putAll方法的map中.如果key有重复,则value值被覆盖.
public void putAll(Map<? extends K,? extends V> m) {
    putMapEntries(m,true);
}

//删除指定key的条目
public V remove(Object key) {
    Node<K,V> e;
    /**
     * null:显然传入的value=null,说明需要忽略value,所以matchValue必定为false.
     * true:删除当前节点时,会移动其它节点.
     */
    return (e = removeNode(hash(key),null,true)) == null ?
            null : e.value;
}

/**
 * Map.remove方法及其相关方法的实现
 * @param matchValue 如果为true,则删除一个node的条件是:key和value都一致,才删除.
 * @param movable 如果为false,则删除当前节点时,不会移动其它节点.
 */
final Node<K,V> removeNode(int hash,Object key,Object value,boolean matchValue,boolean movable) {
    Node<K,index;
    /**如果table不为null 且 table.leng>0 且 table[first]!=null
     * 赋值:tab=table  &amp;  n=tab.length  &amp;  p=tab[first] &amp; index=first
     * first=(n-1) &amp; hash :这个索引到底是什么?其实就是key在table的下标.所以如果如果tab[index]=null,说明
     * 这个索引值处没有存储元素,也就是table中未存储这个索引值的任何node,故不需要再往下查找啦,直接返回null.
     */
    if ((tab = table) != null &amp;&amp; (n = tab.length) > 0 &amp;&amp;
            (p = tab[index = (n - 1) &amp; hash]) != null) {
        Node<K,V> node = null,e; K k; V v;
        /**
         * 这里的写法和插入node写法一致.首先检查bucket中第一个node是否符合条件,也就是检查p是否符合条件;
         * 如果p(=tab[index])的hash和key都一致,则node=p;
         */
        if (p.hash == hash &amp;&amp;
                ((k = p.key) == key || (key != null &amp;&amp; key.equals(k))))
            node = p;
        //如果p后面有节点,即hash值相同的节点个数>1
        else if ((e = p.next) != null) {
            //如果p节点类型为红黑树节点,则调用红黑树节点的查找方法.
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash,key);
            //如果p节点为链表节点,则顺序查找链表节点
            else {
                do {
                    if (e.hash == hash &amp;&amp;
                            ((k = e.key) == key ||
                                    (key != null &amp;&amp; key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        /**如果找到指定hash的node,且保证删除策略matchValue,则可以删除.
         * 1.matchValue=true,需要根据value是否一致来确定是否删除;
         * 2.matchValue=false,则删除.
         */
        if (node != null &amp;&amp; (!matchValue || (v = node.value) == value ||
                (value != null &amp;&amp; value.equals(v)))) {
            //node类型为红黑树节点,调用红黑树节点删除方法.
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this,movable);
            /**p:需要被删除节点node的前驱
             * 如果p节点和node节点是同一个,更改bucket中的值/
             * buckt=tab[index]=node--->node.next
             */
            else if (node == p)
                tab[index] = node.next;
            //直接更改链接指针,则删除node节点.
            else
                p.next = node.next;
            //结构更改次数+1
            ++modCount;
            //键值对个数-1
            --size;
            //回调函数
            afterNodeRemoval(node);
            //返回删除节点
            return node;
        }
    }
    return null;
}

/**
 * 删除map中所有的键值对.此方法调用后,map实例将为null,因为方法中对tab[i]=null的赋值
 */
public void clear() {
    Node<K,V>[] tab;
    modCount++;
    if ((tab = table) != null &amp;&amp; size > 0) {
        size = 0;
        //注意:tab[i]=null,则告诉jvm可以对table的内存进行回收,同时table也不再拥有其内存空间.
        for (int i = 0; i < tab.length; ++i)
            tab[i] = null;
    }
}

/**
 * 这个方法没啥好说的
 */
public boolean containsValue(Object value) {
    Node<K,V>[] tab; V v;
    if ((tab = table) != null &amp;&amp; size > 0) {
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                if ((v = e.value) == value ||
                        (value != null &amp;&amp; value.equals(v)))
                    return true;
            }
        }
    }
    return false;
}

/**
 * 返回map中key的集合视图.
 * 这一集合由map做后台支撑,因此map中key的更改会影响key的Set集合,反之亦然.
 * 如果在key的集合迭代过程中,map中key被更改了,会产生什么结果并未定义.
 * 这一set支持删除元素,通过Iterator.remove(),Set.remove(),* removeAll(),retainAll(),clear()方法,会从map中删除整个条目.
 * 这一set不支持add()和addAll()方法.
 */
public Set<K> keySet() {
    Set<K> ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}

/**继承于set骨架实现的内部final类
 */
final class KeySet extends AbstractSet<K> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator<K> iterator()     { return new KeyIterator(); }
    public final boolean contains(Object o) { return containsKey(o); }
    public final boolean remove(Object key) {
        return removeNode(hash(key),true) != null;
    }
    public final Spliterator<K> spliterator() {
        return new KeySpliterator<>(HashMap.this,-1,0);
    }
    public final void forEach(java.util.function.Consumer<? super K> action) {
        Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 &amp;&amp; (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.key);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }
}

/**
 * 获取map中values的一个Collection视图.
 * 这个collection是以map作为后台支撑的,所以map中value的更改会影响这个collection,反之亦然.
 * 当迭代这个collection时,如果map发生了改变,迭代结果会受到什么影响并未定义.
 * 这个collection支持元素的删除,* Collection.remove(),removeAll(),* retainAll(),均可进行删除,此时删除的是一个条目.
 * 这个collection不支持元素的添加,即为不支持add()和addAll()方法.
 */
public Collection<V> values() {
    Collection<V> vs = values;
    if (vs == null) {
        vs = new Values();
        values = vs;
    }
    return vs;
}
//继续collection骨架实现的内部final类
final class Values extends AbstractCollection<V> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator<V> iterator()     { return new ValueIterator(); }
    public final boolean contains(Object o) { return containsValue(o); }
    public final Spliterator<V> spliterator() {
        return new ValueSpliterator<>(HashMap.this,0);
    }
    public final void forEach(java.util.function.Consumer<? super V> action) {
        Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }
}

/**
 * 返回map中条目的一个set.
 * 这个set后台由map支撑,故在结构上,二者互相影响.
 * 支持删除操作,不支持添加操作.
 */
public Set<Map.Entry<K,V>> entrySet() {
    Set<Map.Entry<K,V>> es;
    return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}
//继承set骨架实现的内部final类
final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator<Map.Entry<K,V>> iterator() {
        return new EntryIterator();
    }
    public final boolean contains(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry<?,?>) o;
        Object key = e.getKey();
        Node<K,V> candidate = getNode(hash(key),key);
        return candidate != null &amp;&amp; candidate.equals(e);
    }
    public final boolean remove(Object o) {
        if (o instanceof Map.Entry) {
            Map.Entry<?,?>) o;
            Object key = e.getKey();
            Object value = e.getValue();
            return removeNode(hash(key),true,true) != null;
        }
        return false;
    }
    public final Spliterator<Map.Entry<K,V>> spliterator() {
        return new EntrySpliterator<>(HashMap.this,0);
    }
    public final void forEach(java.util.function.Consumer<? super Entry<K,V>> action) {
        Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }
}

// Overrides of JDK8 Map extension methods

/**
 * 以下为:jdk8中map的扩展方法
 */
@Override
public V getOrDefault(Object key,V defaultValue) {
    Node<K,V> e;
    return (e = getNode(hash(key),key)) == null ? defaultValue : e.value;
}

@Override
public V putIfAbsent(K key,true);
}

@Override
public boolean remove(Object key,Object value) {
    return removeNode(hash(key),true) != null;
}

@Override
public boolean replace(K key,V oldValue,V newValue) {
    Node<K,V> e; V v;
    if ((e = getNode(hash(key),key)) != null &amp;&amp;
            ((v = e.value) == oldValue || (v != null &amp;&amp; v.equals(oldValue)))) {
        e.value = newValue;
        afterNodeAccess(e);
        return true;
    }
    return false;
}

@Override
public V replace(K key,V value) {
    Node<K,V> e;
    if ((e = getNode(hash(key),key)) != null) {
        V oldValue = e.value;
        e.value = value;
        afterNodeAccess(e);
        return oldValue;
    }
    return null;
}

@Override
public V computeIfAbsent(K key,java.util.function.Function<? super K,? extends V> mappingFunction) {
    if (mappingFunction == null)
        throw new NullPointerException();
    int hash = hash(key);
    Node<K,V> first; int n,i;
    int binCount = 0;
    TreeNode<K,V> t = null;
    Node<K,V> old = null;
    if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((first = tab[i = (n - 1) &amp; hash]) != null) {
        if (first instanceof TreeNode)
            old = (t = (TreeNode<K,key);
        else {
            Node<K,V> e = first; K k;
            do {
                if (e.hash == hash &amp;&amp;
                        ((k = e.key) == key || (key != null &amp;&amp; key.equals(k)))) {
                    old = e;
                    break;
                }
                ++binCount;
            } while ((e = e.next) != null);
        }
        V oldValue;
        if (old != null &amp;&amp; (oldValue = old.value) != null) {
            afterNodeAccess(old);
            return oldValue;
        }
    }
    V v = mappingFunction.apply(key);
    if (v == null) {
        return null;
    } else if (old != null) {
        old.value = v;
        afterNodeAccess(old);
        return v;
    }
    else if (t != null)
        t.putTreeVal(this,v);
    else {
        tab[i] = newNode(hash,v,first);
        if (binCount >= TREEIFY_THRESHOLD - 1)
            treeifyBin(tab,hash);
    }
    ++modCount;
    ++size;
    afterNodeInsertion(true);
    return v;
}

public V computeIfPresent(K key,java.util.function.BiFunction<? super K,? super V,? extends V> remappingFunction) {
    if (remappingFunction == null)
        throw new NullPointerException();
    Node<K,V> e; V oldValue;
    int hash = hash(key);
    if ((e = getNode(hash,key)) != null &amp;&amp;
            (oldValue = e.value) != null) {
        V v = remappingFunction.apply(key,oldValue);
        if (v != null) {
            e.value = v;
            afterNodeAccess(e);
            return v;
        }
        else
            removeNode(hash,true);
    }
    return null;
}

@Override
public V compute(K key,? extends V> remappingFunction) {
    if (remappingFunction == null)
        throw new NullPointerException();
    int hash = hash(key);
    Node<K,V> e = first; K k;
            do {
                if (e.hash == hash &amp;&amp;
                        ((k = e.key) == key || (key != null &amp;&amp; key.equals(k)))) {
                    old = e;
                    break;
                }
                ++binCount;
            } while ((e = e.next) != null);
        }
    }
    V oldValue = (old == null) ? null : old.value;
    V v = remappingFunction.apply(key,oldValue);
    if (old != null) {
        if (v != null) {
            old.value = v;
            afterNodeAccess(old);
        }
        else
            removeNode(hash,true);
    }
    else if (v != null) {
        if (t != null)
            t.putTreeVal(this,v);
        else {
            tab[i] = newNode(hash,first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab,hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
    }
    return v;
}

@Override
public V merge(K key,java.util.function.BiFunction<? super V,? extends V> remappingFunction) {
    if (value == null)
        throw new NullPointerException();
    if (remappingFunction == null)
        throw new NullPointerException();
    int hash = hash(key);
    Node<K,V> e = first; K k;
            do {
                if (e.hash == hash &amp;&amp;
                        ((k = e.key) == key || (key != null &amp;&amp; key.equals(k)))) {
                    old = e;
                    break;
                }
                ++binCount;
            } while ((e = e.next) != null);
        }
    }
    if (old != null) {
        V v;
        if (old.value != null)
            v = remappingFunction.apply(old.value,value);
        else
            v = value;
        if (v != null) {
            old.value = v;
            afterNodeAccess(old);
        }
        else
            removeNode(hash,true);
        return v;
    }
    if (value != null) {
        if (t != null)
            t.putTreeVal(this,value);
        else {
            tab[i] = newNode(hash,hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
    }
    return value;
}

@Override
public void forEach(BiConsumer<? super K,? super V> action) {
    Node<K,V>[] tab;
    if (action == null)
        throw new NullPointerException();
    if (size > 0 &amp;&amp; (tab = table) != null) {
        int mc = modCount;
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next)
                action.accept(e.key,e.value);
        }
        if (modCount != mc)
            throw new ConcurrentModificationException();
    }
}

@Override
public void replaceAll(BiFunction<? super K,? extends V> function) {
    Node<K,V>[] tab;
    if (function == null)
        throw new NullPointerException();
    if (size > 0 &amp;&amp; (tab = table) != null) {
        int mc = modCount;
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                e.value = function.apply(e.key,e.value);
            }
        }
        if (modCount != mc)
            throw new ConcurrentModificationException();
    }
}

/* ------------------------------------------------------------ */
// clone和序列化实现
/**
 * 返回map实例的浅拷贝:key和value本身不会被clone,因为key和value均为对象.
 */
@SuppressWarnings("unchecked")
@Override
public Object clone() {
    HashMap<K,V> result;
    try {
        result = (HashMap<K,V>)super.clone();
    } catch (CloneNotSupportedException e) {
        // this shouldn't happen,since we are Cloneable
        throw new InternalError(e);
    }
    //将result实例的一些域进行赋值,要么为null,要么为0.因为result和原map共享table,所以所有域的值都不再有任何意义.
    result.reinitialize();
    //使用map初始化result
    result.putMapEntries(this,false);
    return result;
}

//这些方法在序列化HasSet时,同样适用.
final float loadFactor() { return loadFactor; }
//如果table不为null,返回容量为table的长度;
//如果table为null,如果阈值>0,返回容量为阈值;如果阈值<=0,返回默认初始化容量.
final int capacity() {
    return (table != null) ? table.length :
            (threshold > 0) ? threshold :
                    DEFAULT_INITIAL_CAPACITY;
}

/**
 * 保存当前HashMap实例到流中(如序列化时)
 * 序列化数据格式:
 * 1.HashMap的容量(=桶数组的长度).
 * 2.size(键值对个数)
 * 3.键值对(顺序不确定)
 */
private void writeObject(java.io.ObjectOutputStream s)
        throws IOException {
    int buckets = capacity();
    // Write out the threshold,loadfactor,and any hidden stuff
    //写入:阈值,负载因子,其它隐藏信息
    s.defaultWriteObject();
    //写入:bucket个数(容量)
    s.writeInt(buckets);
    //写入size
    s.writeInt(size);
    //写入:键值对
    internalWriteEntries(s);
}

/**
 * 从流重建HashMap(如反序列化时)
 */
private void readObject(java.io.ObjectInputStream s)
        throws IOException,ClassNotFoundException {
    //读取:阈值(忽略),其它隐藏信息
    s.defaultReadObject();
    //初始化map,对HashMap的一些域初始化.
    reinitialize();
    //如果负载因子<=0 or 为非数字值,则抛出异常.
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new InvalidObjectException("Illegal load factor: " +
                loadFactor);
    /**
     *读取buckets值,且忽略.
     * 忽略是什么意思?
     * 因为stream的读取必须是一个个二进制位的读取,所以读入顺序同序列化顺序一致.比如,必须先读取bucket才能读取size.
     * 所以虽然读取了bucket的值,但是只是为了整个流的读取,不会对这个值进行处理.
     */
    s.readInt();
    //读取size,并保存
    int mappings = s.readInt();
    //如果键值对个数<0,则抛出异常.
    if (mappings < 0)
        throw new InvalidObjectException("Illegal mappings count: " +
                mappings);
    //如果键值对个数>0
    else if (mappings > 0) { // (if zero,use defaults)
        // Size the table using given load factor only if within
        // range of 0.25...4.0
        //负载因子
        float lf = Math.min(Math.max(0.25f,loadFactor),4.0f);
        //容量(必然大于键值对个数)
        float fc = (float)mappings / lf + 1.0f;
        //根据fc进一步确定容量cap
        int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                DEFAULT_INITIAL_CAPACITY :
                (fc >= MAXIMUM_CAPACITY) ?
                        MAXIMUM_CAPACITY :
                        tableSizeFor((int)fc));
        //阈值=容量*负载因子
        float ft = (float)cap * lf;
        //根据ft确定阈值
        threshold = ((cap < MAXIMUM_CAPACITY &amp;&amp; ft < MAXIMUM_CAPACITY) ?
                (int)ft : Integer.MAX_VALUE);
        //为table申请内存空间个数:cap
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
        table = tab;

        //table建好后,将键值对拷贝到table中.
        for (int i = 0; i < mappings; i++) {
            @SuppressWarnings("unchecked")
            K key = (K) s.readObject();
            @SuppressWarnings("unchecked")
            V value = (V) s.readObject();
            putVal(hash(key),false);
        }
    }
}

/* ------------------------------------------------------------ */
// hash迭代器
//抽象类
abstract class HashIterator {
    Node<K,V> next;        // next entry to return
    Node<K,V> current;     // current entry
    int expectedModCount;  // for fast-fail
    int index;             // current slot

    HashIterator() {
        expectedModCount = modCount;//保证了在map结构发生改变时,迭代器失效
        Node<K,V>[] t = table;
        current = next = null;
        index = 0;
        //找到迭代的第一个入口
        if (t != null &amp;&amp; size > 0) { // advance to first entry
            do {} while (index < t.length &amp;&amp; (next = t[index++]) == null);
        }
    }

    public final boolean hasNext() {
        return next != null;
    }

    final Node<K,V> nextNode() {
        Node<K,V>[] t;
        Node<K,V> e = next;
        //map结构改变,抛出异常
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        //节点为null,抛出异常
        if (e == null)
            throw new NoSuchElementException();
        //如果当前节点e为最后一个节点,则再次为index赋值,找到迭代器的入口.注意此时next=null
        if ((next = (current = e).next) == null &amp;&amp; (t = table) != null) {
            do {} while (index < t.length &amp;&amp; (next = t[index++]) == null);
        }
        //返回节点
        return e;
    }

    public final void remove() {
        Node<K,V> p = current;
        //节点为null,抛出异常
        if (p == null)
            throw new IllegalStateException();
        //map结构改变,抛出异常
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        //释放当前节点内存,通知jvm可以对其进行回收
        current = null;
        K key = p.key;
        //删除节点
        removeNode(hash(key),false);
        //更新map结构更改次数.
        expectedModCount = modCount;
    }
}

//key迭代器,继承hash迭代器
final class KeyIterator extends HashIterator
        implements Iterator<K> {
    public final K next() { return nextNode().key; }
}

//value迭代器,继承hash迭代器
final class ValueIterator extends HashIterator
        implements Iterator<V> {
    public final V next() { return nextNode().value; }
}

//entry迭代器,继承hash迭代器
final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
    public final Map.Entry<K,V> next() { return nextNode(); }
}

/* ------------------------------------------------------------ */
// spliterators分隔迭代器

static class HashMapSpliterator<K,V> {
    final HashMap<K,V> map;
    Node<K,V> current;          // 当前节点
    int index;                  // current index,modified on advance/split当前索引,在节点向前或者被分割时,值改变
    int fence;                  // table最后一个索引值+1
    int est;                    // 预估size大小
    int expectedModCount;       // 用于检查map结构是否更改的标准域

    HashMapSpliterator(HashMap<K,V> m,int origin,int fence,int est,int expectedModCount) {
        this.map = m;
        this.index = origin;
        this.fence = fence;
        this.est = est;
        this.expectedModCount = expectedModCount;
    }

    //第一次使用时,初始化fence和size的值
    final int getFence() { // initialize fence and size on first use
        int hi;
        if ((hi = fence) < 0) {
            HashMap<K,V> m = map;
            est = m.size;
            expectedModCount = m.modCount;
            Node<K,V>[] tab = m.table;
            //table=null,则fence=0;否则为table的length
            hi = fence = (tab == null) ? 0 : tab.length;
        }
        return hi;
    }
    /该方法用于估算还剩下多少个元素需要遍历
    public final long estimateSize() {
        getFence(); // force init
        return (long) est;
    }
}

//static final类
//key分隔迭代器,继承hash分隔迭代器
static final class KeySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<K> {
    KeySpliterator(HashMap<K,int expectedModCount) {
        super(m,origin,fence,est,expectedModCount);
    }

    /*这就是为Spliterator专门设计的方法,区分与普通的Iterator,该方法会把当
     *前元素划分一部分出去创建一个新的Spliterator作为返回,两个Spliterator
     *变会并行执行,如果元素个数小到无法划分则返回null
     */
    public KeySpliterator<K,V> trySplit() {
        int hi = getFence(),lo = index,mid = (lo + hi) >>> 1;
        return (lo >= mid || current != null) ? null :
                new KeySpliterator<>(map,lo,index = mid,est >>>= 1,expectedModCount);
    }
    //对每一个key执行action接口定义的操作
    public void forEachRemaining(java.util.function.Consumer<? super K> action) {
        int i,hi,mc;
        if (action == null)
            throw new NullPointerException();
        HashMap<K,V> m = map;
        Node<K,V>[] tab = m.table;
        if ((hi = fence) < 0) {
            mc = expectedModCount = m.modCount;
            hi = fence = (tab == null) ? 0 : tab.length;
        }
        else
            mc = expectedModCount;
        if (tab != null &amp;&amp; tab.length >= hi &amp;&amp;
                (i = index) >= 0 &amp;&amp; (i < (index = hi) || current != null)) {
            Node<K,V> p = current;
            current = null;
            do {
                if (p == null)
                    p = tab[i++];
                else {
                    //当前节点执行accept操作,就是你定义consumer接口中的操作.
                    action.accept(p.key);
                    p = p.next;
                }
            } while (p != null || i < hi);
            //map结构改变,抛出异常.
            if (m.modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    //查找table中第一个非空的bucket,如果有,则对其执行action中的操作,并返回true;否则返回false;
    public boolean tryAdvance(java.util.function.Consumer<? super K> action) {
        int hi;
        if (action == null)
            throw new NullPointerException();
        Node<K,V>[] tab = map.table;
        //hi=table.length
        if (tab != null &amp;&amp; tab.length >= (hi = getFence()) &amp;&amp; index >= 0) {
            while (current != null || index < hi) {
                if (current == null)
                    current = tab[index++];
                else {
                    K k = current.key;
                    current = current.next;
                    action.accept(k);
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
        }
        return false;
    }
    //其实就是表示该Spliterator有哪些特性,用于可以更好控制和
    //优化Spliterator的使用
    public int characteristics() {
        return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
    }
}
//value分隔迭代器,继承自hashmap分隔迭代器,各个方法和key分隔迭代器一样,不解释
static final class ValueSpliterator<K,V>
        implements Spliterator<V> {
    ValueSpliterator(HashMap<K,expectedModCount);
    }

    public ValueSpliterator<K,mid = (lo + hi) >>> 1;
        return (lo >= mid || current != null) ? null :
                new ValueSpliterator<>(map,expectedModCount);
    }

    public void forEachRemaining(java.util.function.Consumer<? super V> action) {
        int i,V> p = current;
            current = null;
            do {
                if (p == null)
                    p = tab[i++];
                else {
                    action.accept(p.value);
                    p = p.next;
                }
            } while (p != null || i < hi);
            if (m.modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    public boolean tryAdvance(java.util.function.Consumer<? super V> action) {
        int hi;
        if (action == null)
            throw new NullPointerException();
        Node<K,V>[] tab = map.table;
        if (tab != null &amp;&amp; tab.length >= (hi = getFence()) &amp;&amp; index >= 0) {
            while (current != null || index < hi) {
                if (current == null)
                    current = tab[index++];
                else {
                    V v = current.value;
                    current = current.next;
                    action.accept(v);
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
        }
        return false;
    }

    public int characteristics() {
        return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
    }
}
//entry分隔迭代器,功能和key分隔迭代器,不解释
static final class EntrySpliterator<K,V>
        implements Spliterator<Map.Entry<K,V>> {
    EntrySpliterator(HashMap<K,expectedModCount);
    }

    public EntrySpliterator<K,mid = (lo + hi) >>> 1;
        return (lo >= mid || current != null) ? null :
                new EntrySpliterator<>(map,expectedModCount);
    }

    public void forEachRemaining(java.util.function.Consumer<? super Entry<K,V>> action) {
        int i,V> p = current;
            current = null;
            do {
                if (p == null)
                    p = tab[i++];
                else {
                    action.accept(p);
                    p = p.next;
                }
            } while (p != null || i < hi);
            if (m.modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    public boolean tryAdvance(Consumer<? super Entry<K,V>> action) {
        int hi;
        if (action == null)
            throw new NullPointerException();
        Node<K,V>[] tab = map.table;
        if (tab != null &amp;&amp; tab.length >= (hi = getFence()) &amp;&amp; index >= 0) {
            while (current != null || index < hi) {
                if (current == null)
                    current = tab[index++];
                else {
                    Node<K,V> e = current;
                    current = current.next;
                    action.accept(e);
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
        }
        return false;
    }

    public int characteristics() {
        return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
    }
}

/* ------------------------------------------------------------ */
//支持LinkedHashMap功能


/*
 * The following package-protected methods are designed to be
 * overridden by LinkedHashMap,but not by any other subclass.
 * Nearly all other internal methods are also package-protected
 * but are declared final,so can be used by LinkedHashMap,view
 * classes,and HashSet.
 * 下面的包级私方法被设计为由LinkedHashMap重写,但不能由其它任何子类重写.
 * 几乎所有其它的内部方法都是包级私有,但声明类型都为final,因此LinkedHashMap,视图类,HashSet都可以使用.
 */


//创建常规节点(即为链表节点,非红黑树节点)
Node<K,V> newNode(int hash,V> next) {
    return new Node<>(hash,next);
}

//从树节点转为普通节点
Node<K,V> replacementNode(Node<K,V> p,V> next) {
    return new Node<>(p.hash,p.key,p.value,next);
}

//创建红黑树节点
TreeNode<K,V> newTreeNode(int hash,V> next) {
    return new TreeNode<>(hash,next);
}

//普通节点转为红黑树节点
TreeNode<K,V> replacementTreeNode(Node<K,V> next) {
    return new TreeNode<>(p.hash,next);
}

/**
 * 重置HashMap实例的一些域到默认状态.
 * 这一方法只会被clone()和readObject()这两个方法调用.
 */
void reinitialize() {
    table = null;
    entrySet = null;
    keySet = null;
    values = null;
    modCount = 0;
    threshold = 0;
    size = 0;
}

// 回调以允许LinkedHashMap后置操作(访问,插入,删除)
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }

// 仅从writeObject调用,以确保兼容的排序。
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
    Node<K,V>[] tab;
    if (size > 0 &amp;&amp; (tab = table) != null) {
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                s.writeObject(e.key);
                s.writeObject(e.value);
            }
        }
    }
}

/* --------------红黑树--------------- */

/**
 * 红黑树entry。扩展LinkedHashMap.Entry(反过来扩展节点),因此可以用作普通或扩展的链表节点。
 */
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  //红黑树连接点
    TreeNode<K,V> left; //左孩子
    TreeNode<K,V> right; //右孩子
    TreeNode<K,V> prev;    //删除节点时,需要断开链接,这个节点记录了删除节点的前一个节点.
    boolean red;
    TreeNode(int hash,V val,V> next) {
        super(hash,val,next);
    }

    /**
     * 返回当前节点的树根节点.
     */
    final TreeNode<K,V> root() {
        for (TreeNode<K,V> r = this,p;;) {
            //如果r无双亲节点,则r为根节点
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }

    /**
     * 确保root节点为tab中的第一个节点
     * tab:root节点所在红黑树节点数组
     * 说白了就3个任务:
     * 1.root节点从原位置删除
     * 2.root节点插入到tab[index]位置
     * 3.root作为根节点,更改后继和前驱.
     */
    static <K,V> void moveRootToFront(Node<K,TreeNode<K,V> root) {
        int n;
        //如果root节点不为null &amp; tab不为null &amp;&amp; tab.length>0
        //n=tab.length
        if (root != null &amp;&amp; tab != null &amp;&amp; (n = tab.length) > 0) {
            //获取第一个节点在tab中的索引
            int index = (n - 1) &amp; root.hash;
            //获取tab[index]节点
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
            //如果root节点不是first节点
            if (root != first) {
                Node<K,V> rn;
                //root节点赋值给tab中第一个节点
                tab[index] = root;
                //保存root节点的前驱
                TreeNode<K,V> rp = root.prev;
                //如果root后继不为null
                if ((rn = root.next) != null)
                    //root后继的前驱改为root的前驱,这样就把root从原位置移除掉了
                    ((TreeNode<K,V>)rn).prev = rp;
                //如果root节点前驱的后继不为null,则root前驱的后继指向root的后继.
                if (rp != null)
                    rp.next = rn;
                //如果first不为null,则让first的前驱指向root
                if (first != null)
                    first.prev = root;
                //root的后继指向first
                root.next = first;
                //此时root无前驱了,无设为null,完成root在tab中第一的位置.
                root.prev = null;
            }
            assert checkInvariants(root);
        }
    }

    /**
     * Finds the node starting at root p with the given hash and key.
     * The kc argument caches comparableClassFor(key) upon first use
     * comparing keys.
     * 根据给定的key和hash,从红黑树的root节点开始查找.
     * kc参数存在的意义:第一次使用时,缓存可比较的key.这样下次一样的key,则可以迅速找到该节点(当然map不能改变)
     * @param h hash值
     * @param k 查找key
     * @param kc
     * @return
     */
    final TreeNode<K,V> find(int h,Class<?> kc) {
        TreeNode<K,V> p = this;
        do {
            int ph,dir; K pk;
            TreeNode<K,V> pl = p.left,pr = p.right,q;
            if ((ph = p.hash) > h)
                p = pl;
            else if (ph < h)
                p = pr;
            //hash,key都和当前节点p相同,则查找返回p~
            else if ((pk = p.key) == k || (k != null &amp;&amp; k.equals(pk)))
                return p;
            //左子树为null,则遍历节点转为右子树
            else if (pl == null)
                p = pr;
            //右子树为null,则遍历节点转为左子树
            else if (pr == null)
                p = pl;
            //缓存非空
            else if ((kc != null ||
                    (kc = comparableClassFor(k)) != null) &amp;&amp;
                    (dir = compareComparables(kc,k,pk)) != 0)
                p = (dir < 0) ? pl : pr;
            //右子树递归
            else if ((q = pr.find(h,kc)) != null)
                return q;
            else
                p = pl;
        } while (p != null);
        return null;
    }

    /**
     * 查找root节点时,本方法被调用.
     */
    final TreeNode<K,V> getTreeNode(int h,Object k) {
        return ((parent != null) ? root() : this).find(h,null);
    }

    /**
     * Tie-breaking工具是为了插入元素具有相同的hash值且无法进行其它比较时,对插入顺序进行排序.
     * 我们并不需要一个完全的排序,只需要一个一致的插入规则来维护等价重叠.
     * 本方法比单纯的检测一个二进制位的方式更有必要.
     */
    static int tieBreakOrder(Object a,Object b) {
        int d;
        //如果a和b中至少一个为null 或者 a和b类型相同
        if (a == null || b == null ||
                (d = a.getClass().getName().
                        compareTo(b.getClass().getName())) == 0)
            //identityHashCode和hashCode返回相同值
            d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                    -1 : 1);
        return d;
    }

    /**
     * 整理连接此节点的整棵红黑树上的所有节点.
     * 此方法用法:在插入,删除节点后,红黑树性质被破坏时,进行结构的调整.
     * @return 返回树根节点
     */
    final void treeify(Node<K,V>[] tab) {
        TreeNode<K,V> root = null;
        for (TreeNode<K,V> x = this,next; x != null; x = next) {
            next = (TreeNode<K,V>)x.next;
            x.left = x.right = null;
            if (root == null) {
                x.parent = null;
                x.red = false;
                root = x;
            }
            else {
                K k = x.key;
                int h = x.hash;
                Class<?> kc = null;
                for (TreeNode<K,V> p = root;;) {
                    int dir,ph;
                    K pk = p.key;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((kc == null &amp;&amp;
                            (kc = comparableClassFor(k)) == null) ||
                            (dir = compareComparables(kc,pk)) == 0)
                        dir = tieBreakOrder(k,pk);

                    TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        x.parent = xp;
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        root = balanceInsertion(root,x);
                        break;
                    }
                }
            }
        }
        moveRootToFront(tab,root);
    }

    /**
     * 返回非TreeNode节点的列表,替换那些从此节点链接的节点,此节点作为返回链表的头节点。
     */
    final Node<K,V> untreeify(HashMap<K,V> map) {
        Node<K,tl = null;
        for (Node<K,V> q = this; q != null; q = q.next) {
            Node<K,V> p = map.replacementNode(q,null);
            if (tl == null)
                hd = p;
            else
                tl.next = p;
            tl = p;
        }
        return hd;
    }

    /**
     * Tree version of putVal.
     */
    final TreeNode<K,V> putTreeVal(HashMap<K,V> map,int h,K k,V v) {
        Class<?> kc = null;
        boolean searched = false;
        TreeNode<K,V> root = (parent != null) ? root() : this;
        for (TreeNode<K,V> p = root;;) {
            int dir,ph; K pk;
            if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (k != null &amp;&amp; k.equals(pk)))
                return p;
            else if ((kc == null &amp;&amp;
                    (kc = comparableClassFor(k)) == null) ||
                    (dir = compareComparables(kc,pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q,ch;
                    searched = true;
                    if (((ch = p.left) != null &amp;&amp;
                            (q = ch.find(h,kc)) != null) ||
                            ((ch = p.right) != null &amp;&amp;
                                    (q = ch.find(h,kc)) != null))
                        return q;
                }
                //查找插入规则
                dir = tieBreakOrder(k,pk);
            }

            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                Node<K,V> xpn = xp.next;
                //生成新节点
                TreeNode<K,V> x = map.newTreeNode(h,xpn);
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                xp.next = x;
                x.parent = x.prev = xp;
                if (xpn != null)
                    ((TreeNode<K,V>)xpn).prev = x;
                //插入节点后,将树根调整到bucket中
                moveRootToFront(tab,balanceInsertion(root,x));
                return null;
            }
        }
    }

    /**
     * 移除红黑树中的参数节点node,要求在此方法调用前,这个节点必须存在.
     * 这比典型的红黑删除代码更加混乱,因为我们不能将内部节点的内容与被可访问的,遍历期间独立的“下一个”指针固定的叶子后继交换.
     * 相反,我们交换了树的连接(因为左旋或者右旋完成的就是改变子树间的连接)
     * 删除节点后,如果当前红黑树中节点个数太少,到达6个后,就会转为普通链表存储.
     * (红黑树到链表的转换节点个数标准为:2~6,这具体取决于红黑树结构)
     */
    final void removeTreeNode(HashMap<K,boolean movable) {
        int n;
        if (tab == null || (n = tab.length) == 0)
            return;
        int index = (n - 1) &amp; hash;
        TreeNode<K,V>)tab[index],root = first,rl;
        TreeNode<K,V> succ = (TreeNode<K,V>)next,pred = prev;
        if (pred == null)
            tab[index] = first = succ;
        else
            pred.next = succ;
        if (succ != null)
            succ.prev = pred;
        if (first == null)
            return;
        if (root.parent != null)
            root = root.root();
        if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
            tab[index] = first.untreeify(map);  // too small
            return;
        }
        TreeNode<K,V> p = this,pl = left,pr = right,replacement;
        if (pl != null &amp;&amp; pr != null) {
            TreeNode<K,V> s = pr,sl;
            while ((sl = s.left) != null) // find successor
                s = sl;
            boolean c = s.red; s.red = p.red; p.red = c; // swap colors
            TreeNode<K,V> sr = s.right;
            TreeNode<K,V> pp = p.parent;
            if (s == pr) { // p was s's direct parent
                p.parent = s;
                s.right = p;
            }
            else {
                TreeNode<K,V> sp = s.parent;
                if ((p.parent = sp) != null) {
                    if (s == sp.left)
                        sp.left = p;
                    else
                        sp.right = p;
                }
                if ((s.right = pr) != null)
                    pr.parent = s;
            }
            p.left = null;
            if ((p.right = sr) != null)
                sr.parent = p;
            if ((s.left = pl) != null)
                pl.parent = s;
            if ((s.parent = pp) == null)
                root = s;
            else if (p == pp.left)
                pp.left = s;
            else
                pp.right = s;
            if (sr != null)
                replacement = sr;
            else
                replacement = p;
        }
        else if (pl != null)
            replacement = pl;
        else if (pr != null)
            replacement = pr;
        else
            replacement = p;
        if (replacement != p) {
            TreeNode<K,V> pp = replacement.parent = p.parent;
            if (pp == null)
                root = replacement;
            else if (p == pp.left)
                pp.left = replacement;
            else
                pp.right = replacement;
            p.left = p.right = p.parent = null;
        }

        TreeNode<K,V> r = p.red ? root : balanceDeletion(root,replacement);

        if (replacement == p) {  // detach
            TreeNode<K,V> pp = p.parent;
            p.parent = null;
            if (pp != null) {
                if (p == pp.left)
                    pp.left = null;
                else if (p == pp.right)
                    pp.right = null;
            }
        }
        if (movable)
            moveRootToFront(tab,r);
    }

    /**
     * 将红黑树中的节点分隔为较低和较高的树形结构,如果树中节点个数为6,则将转为链表.
     * 这一方法只在resize()时被调用.
     * 可以查看上面关于分隔位和索引的讨论.
     * @param index 用于分隔的table索引
     * @param bit the bit of hash to split on
     */
    final void split(HashMap<K,int index,int bit) {
        TreeNode<K,V> b = this;
        // Relink into lo and hi lists,preserving order
        TreeNode<K,loTail = null;
        TreeNode<K,hiTail = null;
        int lc = 0,hc = 0;
        for (TreeNode<K,V> e = b,next; e != null; e = next) {
            next = (TreeNode<K,V>)e.next;
            e.next = null;
            if ((e.hash &amp; bit) == 0) {
                if ((e.prev = loTail) == null)
                    loHead = e;
                else
                    loTail.next = e;
                loTail = e;
                ++lc;
            }
            else {
                if ((e.prev = hiTail) == null)
                    hiHead = e;
                else
                    hiTail.next = e;
                hiTail = e;
                ++hc;
            }
        }

        if (loHead != null) {
            if (lc <= UNTREEIFY_THRESHOLD)
                tab[index] = loHead.untreeify(map);
            else {
                tab[index] = loHead;
                if (hiHead != null) // (else is already treeified)
                    loHead.treeify(tab);
            }
        }
        if (hiHead != null) {
            if (hc <= UNTREEIFY_THRESHOLD)
                tab[index + bit] = hiHead.untreeify(map);
            else {
                tab[index + bit] = hiHead;
                if (loHead != null)
                    hiHead.treeify(tab);
            }
        }
    }

    /* --------------------红黑树方法--------------------------------- */
    // Red-black tree methods,all adapted from CLR
    //左旋方法
    static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,V> p) {
        TreeNode<K,V> r,pp,rl;
        //如果p不为null &amp; p有孩子不为null
        //r=p.right
        //不平衡原因:在p的右孩子上面插入节点
        if (p != null &amp;&amp; (r = p.right) != null) {
            //rl指向从r上面拿下的左子树
            if ((rl = p.right = r.left) != null)
                //rl双亲节点改为p
                rl.parent = p;
            //p为根节点时,r变为根节点,且更改颜色为黑色.
            if ((pp = r.parent = p.parent) == null)
                (root = r).red = false;
            //p为内部节点,且为pp的左孩子
            else if (pp.left == p)
                pp.left = r;
            //p为内部节,且为pp的右孩子
            else
                pp.right = r;
            //r的左孩子指向p
            r.left = p;
            //p的双亲节点指向r
            p.parent = r;
        }
        //返回根节点
        return root;
    }

    //右旋方法
    static <K,V> rotateRight(TreeNode<K,V> l,lr;
        //如果p不为null且p的左孩子不为null
        //红黑树不平衡原因:在p的左孩子上插入一个node
        if (p != null &amp;&amp; (l = p.left) != null) {
            //l的右子树变为p的右子树
            //lr指向p的左子树
            if ((lr = p.left = l.right) != null)
                //lr的双亲节点改为p
                lr.parent = p;
            //如果p为根节点
            if ((pp = l.parent = p.parent) == null)
                //l节点颜色改为黑色(因为红黑树根节点必须为黑色)
                (root = l).red = false;
            //如果p为内部节点,且p为右节点
            else if (pp.right == p)
                pp.right = l;
            //p为左节点
            else
                pp.left = l;
            //p为l的右子树
            l.right = p;
            //p的双亲节点为l
            p.parent = l;
        }
        //返回根节点
        return root;
    }

    //插入节点后,调整平衡(调用左旋+右旋方法+颜色调整)
    static <K,V> balanceInsertion(TreeNode<K,V> x) {
        x.red = true;
        for (TreeNode<K,V> xp,xpp,xppl,xppr;;) {
            if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (!xp.red || (xpp = xp.parent) == null)
                return root;
            if (xp == (xppl = xpp.left)) {
                if ((xppr = xpp.right) != null &amp;&amp; xppr.red) {
                    xppr.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    if (x == xp.right) {
                        root = rotateLeft(root,x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateRight(root,xpp);
                        }
                    }
                }
            }
            else {
                if (xppl != null &amp;&amp; xppl.red) {
                    xppl.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    if (x == xp.left) {
                        root = rotateRight(root,x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateLeft(root,xpp);
                        }
                    }
                }
            }
        }
    }
    //删除节点后,调整红黑树(左旋方法+右旋方法+颜色调整)
    static <K,V> balanceDeletion(TreeNode<K,V> x) {
        for (TreeNode<K,xpl,xpr;;)  {
            if (x == null || x == root)
                return root;
            else if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (x.red) {
                x.red = false;
                return root;
            }
            else if ((xpl = xp.left) == x) {
                if ((xpr = xp.right) != null &amp;&amp; xpr.red) {
                    xpr.red = false;
                    xp.red = true;
                    root = rotateLeft(root,xp);
                    xpr = (xp = x.parent) == null ? null : xp.right;
                }
                if (xpr == null)
                    x = xp;
                else {
                    TreeNode<K,V> sl = xpr.left,sr = xpr.right;
                    if ((sr == null || !sr.red) &amp;&amp;
                            (sl == null || !sl.red)) {
                        xpr.red = true;
                        x = xp;
                    }
                    else {
                        if (sr == null || !sr.red) {
                            if (sl != null)
                                sl.red = false;
                            xpr.red = true;
                            root = rotateRight(root,xpr);
                            xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                        }
                        if (xpr != null) {
                            xpr.red = (xp == null) ? false : xp.red;
                            if ((sr = xpr.right) != null)
                                sr.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateLeft(root,xp);
                        }
                        x = root;
                    }
                }
            }
            else { // symmetric
                if (xpl != null &amp;&amp; xpl.red) {
                    xpl.red = false;
                    xp.red = true;
                    root = rotateRight(root,xp);
                    xpl = (xp = x.parent) == null ? null : xp.left;
                }
                if (xpl == null)
                    x = xp;
                else {
                    TreeNode<K,V> sl = xpl.left,sr = xpl.right;
                    if ((sl == null || !sl.red) &amp;&amp;
                            (sr == null || !sr.red)) {
                        xpl.red = true;
                        x = xp;
                    }
                    else {
                        if (sl == null || !sl.red) {
                            if (sr != null)
                                sr.red = false;
                            xpl.red = true;
                            root = rotateLeft(root,xpl);
                            xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                        }
                        if (xpl != null) {
                            xpl.red = (xp == null) ? false : xp.red;
                            if ((sl = xpl.left) != null)
                                sl.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateRight(root,xp);
                        }
                        x = root;
                    }
                }
            }
        }
    }

    /**
     * 检查树是否符合红黑树定义
     */
    static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
        TreeNode<K,V> tp = t.parent,tl = t.left,tr = t.right,tb = t.prev,tn = (TreeNode<K,V>)t.next;
        if (tb != null &amp;&amp; tb.next != t)
            return false;
        if (tn != null &amp;&amp; tn.prev != t)
            return false;
        if (tp != null &amp;&amp; t != tp.left &amp;&amp; t != tp.right)
            return false;
        if (tl != null &amp;&amp; (tl.parent != t || tl.hash > t.hash))
            return false;
        if (tr != null &amp;&amp; (tr.parent != t || tr.hash < t.hash))
            return false;
        if (t.red &amp;&amp; tl != null &amp;&amp; tl.red &amp;&amp; tr != null &amp;&amp; tr.red)
            return false;
        if (tl != null &amp;&amp; !checkInvariants(tl))
            return false;
        if (tr != null &amp;&amp; !checkInvariants(tr))
            return false;
        return true;
    }
}

}

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读