sql-server – RODBC和Microsoft SQL Server:截断长字符串
|
我试图使用R / RODBC从Microsoft SQL Server数据库查询变量. RODBC将字符串截断为8000个字符.
原始代码:截断255个字符(根据RODBC文档) 库(RODBC) 部分解决方案:在7999个字符后修改查询字符串截断文本. 库(RODBC) 表/变量包含长达250,000个字符的文本字符串.我真的想和R中的所有文本一起工作.这可能吗? @BrianRipley讨论了以下文档第18页的问题(但没有解决方案): @nutterb在GitHub上讨论了与RODBCext包类似的问题: 已经看过关于SO的类似讨论,但没有使用RODBC和VARCHAR> 8000的解决方案. RODBC sqlQuery() returns varchar(255) when it should return varchar(MAX) RODBC string getting truncated 注意: > R 3.3.2 解决方法由于这是Microsoft提供的ODBC驱动程序的限制,因此在对驱动程序进行更改之前几乎无法完成. @zozlak解释了为什么在你链接的GitHub问题.我倾向于使用存储过程来解决这个问题,但这通常需要为每个特定实例编写存储过程.在某些时候,我可能会想出一种在存储过程中更通用地执行此操作的方法,但我发现在存储过程中构造查询的过程是乏味且令人沮丧的. 出于这个原因,我只花了一些时间构建一个函数,该函数将执行涉及VARCHAR(MAX)变量的有限查询.这是一种蛮力的方法,对于一个17000个字符的变量将它导出为三个变量并将它们粘贴在一起.它很粗糙,可能不是很有效,但是我提出的最好的解决方案. 另一个限制是它不允许您重命名查询中的变量.你将被困在变量中,因为它们在数据库中被命名.如果您只涉及几张表,那可能不是问题.在非常复杂的数据库中,这可能会有问题.但是,至少有了这个,您可以使用一些必要的ID来查询VARCHAR(MAX)变量,在R中执行合并. 正如GitHub问题中所讨论的那样,最好尽量避免使用VARCHAR(MAX).如果确实需要未知长度,则VARBINARY(MAX)更容易查询. 例 源( “https://gist.githubusercontent.com/nutterb/d2e050dada608bb6213e61d0f8471b65/raw/be8717f318b3e3087e7c26c9a8f9d0a582a5daef/query_varchar_max” channel <- odbcDriverConnect(...)
query_varchar_max(channel = channel,id = c("idvar"),varchar_max = c("varchar_max_var","varchar_max_var2"),from = "FROM dbo.table_name WHERE group = ?",data = list(group = "A"))
功能代码 #' @name query_varchar_max
#' @title Query a VARCHAR(MAX) Variable from SQL Server
#'
#' @description The RODBC driver to SQL Server (SQL Server Native Client 11.0)
#' reports the lenght of a VARCHAR(MAX) variable to be zero. This presents
#' difficulties in extracting long text values from the database. Often,the
#' ODBC will assume a length of 255 characters and truncate the text to that
#' many characters. The approach taken here searches the VARCHAR(MAX) variables
#' for the longest length,and extracts the data in segments to be pasted
#' together in R.
#'
#' @param channel A valid ODBC channel to a SQL Server database.
#' @param id A character vector of ID variables that may be used to merge the
#' data from this query into another dataset.
#' @param varchar_max a character vector of variable names that are to be
#' treated as if they are VARCHAR(MAX) variables.
#' @param from A single character string providing the remainder of the query
#' to be run,beginning with the code{FROM} statement.
#' @param stringsAsFactors code{logical(1)}. Should character strings returned
#' from the database be converted to factors?
#' @param ... Additional arguments to code{sqlExecute} when running the full
#' query.
#'
#' @details code{query_varchar_max} operates by determining how many columns of up to
#' 8000 characters each are required to export a complete VARCHAR(MAX) variable.
#' It then creates the necessary number of intermediate variables and queries the
#' data using the SQL Server code{SUBSTRING} command,extracting the VARCHAR(MAX)
#' variable in increments of 8000 characters. After completing the query,#' the intemediary variables are concatenated and removed from the data.
#'
#' The function makes accommodation for multi-part queries as far as [TABLE].[VARIABLE]
#' formats are concerned. It is not intended for use in [SCHEMA].[TABLE].[VARIABLE]
#' formats. This at least allows code{from} to include joins for more complex
#' queries. Parameterized queries are also supported through code{sqlExecute}.
#'
#' @export
query_varchar_max <- function(channel,id,varchar_max,from,stringsAsFactors = FALSE,...)
{
coll <- checkmate::makeAssertCollection()
checkmate::assert_class(x = channel,classes = "RODBC",add = coll)
checkmate::assert_character(x = id,add = coll)
checkmate::assert_character(x = varchar_max,add = coll)
checkmate::assert_character(x = from,len = 1,add = coll)
checkmate::assert_logical(x = stringsAsFactors,add = coll)
checkmate::reportAssertions(coll)
varchar_max_len <-
paste0(
sprintf("MAX(LEN(%s)) AS len_%s",sub("[.]","_",varchar_max)),collapse = ","
)
varchar_len <-
unlist(
RODBCext::sqlExecute(
channel = channel,query = sprintf("SELECT %s %s",varchar_max_len,from),fetch = TRUE
)
)
varchar_max_cols <-
unlist(
mapply(expand_varchar_max,varchar_len,SIMPLIFY = FALSE)
)
Prelim <-
RODBCext::sqlExecute(
channel = channel,query = sprintf("SELECT %s,%s %s",paste0(id,"),paste0(varchar_max_cols,fetch = TRUE,stringsAsFactors = stringsAsFactors,...
)
var_stub_to_combine <-
unique(
sub(
"(part)(d{1,3})","1",sub(".+AS ","",varchar_max_cols)
)
)
col_to_combine <-
lapply(var_stub_to_combine,grep,names(Prelim))
Prelim[sub(".+[.]",varchar_max)] <-
lapply(col_to_combine,function(col) apply(Prelim[col],1,paste0,collapse = ""))
Prelim[-unlist(col_to_combine)]
}
expand_varchar_max <- function(varchar_max,varchar_len)
{
nvar <- varchar_len %/% 8000 + 1
var_list <- vector("character",length = nvar)
for (i in seq_along(var_list))
{
var_list[i] <-
sprintf("SUBSTRING(%s,%s,%s) AS %s_part%s",1 + (i - 1) * 8000,8000,paste0(sub("[.]",i)
}
var_list
} (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
