R / Perlin噪声中的逼真模拟高程数据
发布时间:2020-12-15 23:34:07 所属栏目:大数据 来源:网络整理
导读:有谁知道如何在R中创建模拟栅格高程数据集 – 即实际高程值的2d矩阵? R的抖动似乎不合适.在 Java / Processing中,noise()函数使用 Perlin noise算法实现了这一点,例如: size(200,200);float ns = 0.03; // for scalingfor (float i=0; i200; i++) { for (f
有谁知道如何在R中创建模拟栅格高程数据集 – 即实际高程值的2d矩阵? R的抖动似乎不合适.在
Java / Processing中,noise()函数使用
Perlin noise算法实现了这一点,例如:
size(200,200); float ns = 0.03; // for scaling for (float i=0; i<200; i++) { for (float j=0; j<200; j++) { stroke(noise(i*ns,j*ns) * 255); point(i,j); } } 但我发现R文献中没有提到Perlin噪音.提前致谢. 解决方法
这是R中的一个实现,
按照说明进行 http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html perlin_noise <- function( n = 5,m = 7,# Size of the grid for the vector field N = 100,M = 100 # Dimension of the image ) { # For each point on this n*m grid,choose a unit 1 vector vector_field <- apply( array( rnorm( 2 * n * m ),dim = c(2,n,m) ),2:3,function(u) u / sqrt(sum(u^2)) ) f <- function(x,y) { # Find the grid cell in which the point (x,y) is i <- floor(x) j <- floor(y) stopifnot( i >= 1 || j >= 1 || i < n || j < m ) # The 4 vectors,from the vector field,at the vertices of the square v1 <- vector_field[,i,j] v2 <- vector_field[,i+1,j] v3 <- vector_field[,j+1] v4 <- vector_field[,j+1] # Vectors from the point to the vertices u1 <- c(x,y) - c(i,j) u2 <- c(x,y) - c(i+1,j) u3 <- c(x,j+1) u4 <- c(x,j+1) # Scalar products a1 <- sum( v1 * u1 ) a2 <- sum( v2 * u2 ) a3 <- sum( v3 * u3 ) a4 <- sum( v4 * u4 ) # Weighted average of the scalar products s <- function(p) 3 * p^2 - 2 * p^3 p <- s( x - i ) q <- s( y - j ) b1 <- (1-p)*a1 + p*a2 b2 <- (1-p)*a3 + p*a4 (1-q) * b1 + q * b2 } xs <- seq(from = 1,to = n,length = N+1)[-(N+1)] ys <- seq(from = 1,to = m,length = M+1)[-(M+1)] outer( xs,ys,Vectorize(f) ) } image( perlin_noise() ) 通过添加这些矩阵,您可以拥有更多的分形结构, a <- .6 k <- 8 m <- perlin_noise(2,2,2^k,2^k) for( i in 2:k ) m <- m + a^i * perlin_noise(2^i,2^i,2^k) image(m) m[] <- rank(m) # Histogram equalization image(m) (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |