1099 Build A Binary Search Tree (30 分)
1099 Build A Binary Search Tree (30 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
Given the structure of a binary tree and a sequence of distinct integer keys,there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2. Input Specification:Each input file contains one test case. For each case,the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format Output Specification:For each test case,print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space,with no extra space at the end of the line. Sample Input:9 1 6 2 3 -1 -1 -1 4 5 -1 -1 -1 7 -1 -1 8 -1 -1 73 45 11 58 82 25 67 38 42 Sample Output:
#include<iostream> #include<vector> #include<algorithm> #include<queue> #include<string> #include<map> #include<set> using namespace std; int tree[101]; //对树进行深度遍历 struct Node { int data; int lchild; int rchild; }; int k=0; void inOrder(Node node[],int key[],int i) { if(i!=-1) { inOrder(node,key,node[i].lchild); node[i].data=key[k++]; inOrder(node,node[i].rchild); } } vector<int> print; void level(Node node[]) { queue<int> q; q.push(0); while(!q.empty()) { int temp=q.front(); q.pop(); print.push_back(node[temp].data); if(node[temp].lchild!=-1) q.push(node[temp].lchild); if(node[temp].rchild!=-1) q.push(node[temp].rchild); } } int main() { int n; cin>>n; Node node[n]; for(int i=0;i<n;i++) { cin>>node[i].lchild>>node[i].rchild; } int key[n]; for(int i=0;i<n;i++) cin>>key[i]; sort(key,key+n); inOrder(node,0); level(node); cout<<print[0]; for(int i=1;i<print.size();i++) cout<<" "<<print[i]; return 0; } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |