加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

Codechef STREDUC Reduce string Trie、bitset、DP

发布时间:2020-12-14 05:13:30 所属栏目:大数据 来源:网络整理
导读:VJ传送门 简化题意:给出一个长度为 (l) 的模板串 (s) 与若干匹配串 (p_i) ,每一次你可以选择 (s) 中的一个出现在集合 ({p_i}) 中的子串将其消去,其左右分成的两个串拼接在一起形成新的串 (s) 。问如是进行消除,最后 (s) 的最短长度。 当

VJ传送门

简化题意:给出一个长度为(l)的模板串(s)与若干匹配串(p_i),每一次你可以选择(s)中的一个出现在集合({p_i})中的子串将其消去,其左右分成的两个串拼接在一起形成新的串(s)。问如是进行消除,最后(s)的最短长度。


当时没想到做法,现在看起来还是比较简单欸……

考虑计算出所有可以被消除的区间然后(DP)

先将所有匹配串插入到Trie树上,设(f_{i,j,k})表示子串(s_{i,j})通过任意消除得到的串是否能对应到(Trie)树的(k)号节点上。转移分两种:

①在子串(s_{i,j-1})之后接上(s_j),直接在(Trie)树上找是否存在对应的儿子;②存在某个子串(s_{x,j}(x > i))可以被消除,那么(forall k,f_{i,k} |= f_{i,x-1,k})

计算完成后,如果存在(k)使得某一个匹配串在(Trie)树上对应节点(k)(f_{i,k}=1),那么意味着子串(s_{i,j})可以通过消除消除成一个匹配串,那么我们认为子串(s_{i,j})可以被消除,且令(f_{i,root}=1)表示可以消除为空串。

发现复杂度为(O(l^3sum|p_i|)),但是转移②可以使用bitset进行优化,复杂度就会降为(O(frac{l^3 sum |p_i|}{32})),而且状态不满,就能很快的跑过了。

计算出可以被消除的区间然后直接DP就可以算出答案。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    bool f = 0;
    while(!isdigit(c) && c != EOF){
        if(c == ‘-‘)
            f = 1;
        c = getchar();
    }
    if(c == EOF)
        exit(0);
    while(isdigit(c)){
        a = a * 10 + c - 48;
        c = getchar();
    }
    return f ? -a : a;
}

struct node{
    int ch[26];
}Trie[610];
int dp[251],cntN = 1,N,S;
bool can[251][251];
bitset < 610 > f[251][251];
char s[251],mod[31];
vector < int > End;

void insert(){
    int L = strlen(mod + 1),cur = 1;
    for(int i = 1 ; i <= L ; ++i){
        if(!Trie[cur].ch[mod[i] - ‘a‘])
            Trie[cur].ch[mod[i] - ‘a‘] = ++cntN;
        cur = Trie[cur].ch[mod[i] - ‘a‘];
    }
    End.push_back(cur);
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("in","r",stdin);
    freopen("out","w",stdout);
#endif
    scanf("%s",s + 1);
    N = strlen(s + 1);
    for(int i = 1 ; i <= N ; ++i)
        f[i][i - 1][1] = 1;
    S = read();
    for(int i = 1 ; i <= S ; ++i){
        scanf("%s",mod + 1);
        insert();
    }
    for(int i = 1 ; i <= N ; ++i)
        for(int j = i ; j ; --j){
            for(int k = 1 ; k <= cntN ; ++k)
                if(f[j][i - 1][k] && Trie[k].ch[s[i] - ‘a‘])
                    f[j][i][Trie[k].ch[s[i] - ‘a‘]] = 1;
            for(int k = j + 1 ; k <= i ; ++k)
                if(can[k][i])
                    f[j][i] |= f[j][k - 1];
            for(int k = 0 ; k < S ; ++k)
                if(f[j][i][End[k]])
                    f[j][i][1] = 1;
            can[j][i] = f[j][i][1];
        }
    for(int i = 1 ; i <= N ; ++i){
        dp[i] = dp[i - 1] + 1;
        for(int j = i ; j >= 0 ; --j)
            if(can[j][i])
                dp[i] = min(dp[i],dp[j - 1]);
    }
    cout << dp[N];
    return 0;
}

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读