大数据分析:最难的不是分析,而是大数据
从先进的BI工具到机器学习,人工智能,现代企业拥有着各式各样整理分析数据的方法和途径。数据科学家和企业领导人都关注着这些新技术的巨大潜力,然而,当我们将焦点放在分析工具身上时,我们也可能忽略了数据本身的重要性。毕竟如果没有正确的数据,视觉化和预测分析也没有任何用处。 转自:灯塔大数据;微信:DTbigdata
每一个企业需要将他们的基础数据进行分析和甄别,在此基础上,对数据进行不同层次和结构的分类。原因如下: ? 数据深度融入在商业的各个环节 ? 现代企业逐渐意识到,纷繁复杂的数据固然重要,而这些数据是否真的被企业职工运用,并对其工作产生了相关性的影响,才是企业领导所看重的。不同的层级岗位和职位角色都需要做出正确的决策,而良好的决策必须是基于用户数据所提出的。因此,不仅仅是数据科学团队,从产品部门到客户服务部门,再到销售等各个部门都应该获得这些数据资源和信息。 在现代企业中,对数据的处理还仅仅是在每个月的全体会议上查看各项指标还远远不够。组织必须要将数据驱动纳入到决策制定中。以现代营销团队为例。营销人员有大量的丰富的数据可供他们自由支配,尤其是在智能手机,平板电脑,社交媒体平台爆炸式普及的今天,这样,一个品牌可以远距离地与观众互动,并了解顾客的相关信息。如果所有的这些数据被收集到一个中心位置,进行数据分析,那么对客户的长期行为分析并进行消费预判则成为了可能。同样地,根据这样的方法,其他部门,如销售、产品和客户服务部门也能获得前所未有的数据量。 ? 零碎数据共同形成宏观趋势判断 如今,数据在各个行业和企业扮演着越来越重要的角色,企业应该将数据视为机会。每个数据集——CRM、CMS、ERP、营销软件,都包含大量信息和基础数据。现在或许看起来很微小,可是对数据深入的挖掘和分析将会给企业带来巨大的财富。而在现实生活当中,由于不可能预先知道哪些数据很重要,所以企业需要收集尽可能多的数据,这样即使市场环境发生大的改变,企业也能够做出合理的预判和尽可能贴近市场的决策。 基础数据和数据分析同样重要 数据质量是重中之重,倾斜的数据会导致错误的结果。如果你的判断来源于不完整的数据基础,你的决策便会产生一定的偏差甚至产生错误,而这最终将会侵蚀在数据驱动文化背景下人们对数据分析的信心。因此,简洁、完整和正确的数据是有效决策产生的必要前提。 2016年美国总统大选的预测分析,很好地证明了数据质量的重要性。在当时的预测中,大多数数据是基于州级和国家级的电话投票进行的。但是电话调查中很容易出现无人接听的现象,而各州无人接听的占比率也存在着很大的区别,这会很大程度上影响选举团的预测(选举团制度是美国特有的一种选举方式, 选民在大选日投票时,不仅要在总统候选人当中选择,而且要选出代表50个州和华盛顿特区的538名选举人,以组成选举团。当选的选举人必须宣誓在选举团投票时把票投给在该州获胜的候选人。美国总统由选举团选举产生,并非由选民直接选举产生,获得半数以上选举人票者当选总统),结果就是,倾斜的数据产生错误的预测。 如今,机器学习已经受到了大量的炒作。而机器依据大数据分析出来的预判,是否真的能符合事实情况,很大程度上决定于是否拥有坚实的数据基础:一个将数据驱动纳入到组织文化的企业,采集到的简介、完整和正确的数据。”数据驱动”一词已存在多年,但在今天快节奏和迅猛发展的数字经济中,它将成为当代企业的文化使命。
英文原文 The Hardest Part of Analytics Isn’tAnalysis. It’s Data ? From advanced BI tooling to machinelearning and artificial intelligence,modern businesses have more ways thanever to slice and dice their data. As data scientists and business leaders alikefixate on the great potential of these new technologies,we risk losing sightof what’s most important: the data itself. After all,fancy visualizations andpredictive analytics don’t matter without the right data powering them. ? Every single business needs to prioritizecollecting and structuring their underlying data over the analysis they use tounderstand it. Here’s why: Data will be ingrained in every part ofhow we do business Companies have just begun to grasp not onlythe complexity of data,but also the depth of its relationship with their ownemployees. All business roles and levels need to make good decisions,and thebest decisions are made with user data. Thus,every department – not just thedata science team – should have access to that information,from product tocustomer service to sales. It’s no longer enough to just reviewtopline metrics at a monthly all-hands meeting. Organizations must infusedata-driven processes into their decision-making. Take a modern marketing team,for example. Marketers today have a multitude of rich data sources at theirdisposal,especially with the explosion of smartphones,tablets,social mediaplatforms and digital touchpoints through which a brand can interact with itsaudience. If all of this data is collected into a central place,it opens uppowerful new ways of understanding long-term customer behavior. Otherdepartments like sales,product,and customer success similarly have access toan unprecedented amount of data. Every bit of data contributes to thebigger picture As data plays a bigger role across everydepartment and level,businesses must consider all of its data as a growingcollection of opportunities. Every dataset – CRM,CMS,ERP,marketing software– contains a multitude of possible insights. Findings that seem insignificantnow might matter a great deal down the road. It’s impossible to know upfrontwhat data matters,so businesses need to collect as much of it as they can.This lets companies retroactively unearth insights,even if their priorities ormarket conditions change. Insights are only as good as theunderlying data Data quality is king. Bad data leads to badresults. If you base your decisions on incomplete data,it becomes harder totrust the results,and it ultimately erodes confidence in a data-drivenculture. Clean,complete,and correct data is necessary for generatingactionable insights. We saw this with the 2016 presidentialelection. Most predictions were based on national and state-level pollingresults conducted over the phone. But phone surveys are especially susceptibleto nonresponse bias,which itself varies wildly from state to state. Thisaffects the forecast for the Electoral College more than the overall popularvote,yet the Electoral College is what wins elections. The result? Skewed dataproducing the wrong prediction. Machinelearning has received a great deal of hype,and for good reason. But it cannotlive up to its bold potential unless it’s informed by a strong foundation:clean,complete data produced by an organization that ingrains data into itsculture. The term “data-driven” has been around for years,but in today’sfast-paced and increasingly digital economy,it will need to become a culturalmandate for companies everywhere. 近期精彩活动(直接点击查看): 福利 · 阅读 | 免费申请读大数据新书 第21期 投稿和反馈请发邮件至hzzy@hzbook.com。转载大数据公众号文章,请向原文作者申请授权,否则产生的任何版权纠纷与大数据无关。 为大家提供与大数据相关的最新技术和资讯。 近期精彩文章(直接点击查看): 华为内部狂转好文,大数据,看这一篇就够了! 读完这100篇论文,你也是大数据高手! 如何建立数据分析的思维框架 百度内部培训资料PPT:数据分析的道与术 论大数据的十大局限 打包带走!史上最全的大数据分析和制作工具 数据揭秘:中国姓氏排行榜 程序猿分析了42万字歌词后,终于搞清楚民谣歌手唱什么了 计算机告诉你,唐朝诗人之间的关系到底是什么样的? 数据分析:微信红包金额分配的秘密 2000万人口的大北京,上下班原来是这样的(附超炫蝌蚪图) 大数据等IT职业技能图谱【全套17张,第2版】 不要跟赌场说谎,它真的比你老婆还了解你 如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧 不做无效的营销,从不做无效的用户画像开始 更多精彩文章,请在公众号后台点击“历史文章”查看,谢谢。 (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |