题目如下:
Given an array?equations?of strings that represent relationships between variables,each string?equations[i] ?has length?4 ?and takes one of two different forms:?"a==b" ?or?"a!=b" .? Here,?a ?and?b are lowercase letters (not necessarily different) that represent one-letter variable names.
Return?true ?if and only if it is possible to assign integers to variable names?so as to satisfy all the given equations.
?
Example 1:
Input: ["a==b","b!=a"]
Output: false Explanation: If we assign say,a = 1 and b = 1,then the first equation is satisfied,but not the second. There is no way to assign the variables to satisfy both equations.
Example 2:
Input: ["b==a","a==b"]
Output: true Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
Example 3:
Input: ["a==b","b==c","a==c"]
Output: true
Example 4:
Input: ["a==b","b!=c","c==a"]
Output: false
Example 5:
Input: ["c==c","b==d","x!=z"]
Output: true
?
Note:
1 <= equations.length <= 500
equations[i].length == 4
-
equations[i][0] ?and?equations[i][3] ?are lowercase letters
-
equations[i][1] ?is either?‘=‘ ?or?‘!‘
-
equations[i][2] ?is?‘=‘
解题思路:我的方法是用并查集,先把所有等式中的字母合并组成并查集,接下来再判断不等式中的字母是否属于同一祖先。
代码如下:
class Solution(object):
def equationsPossible(self,equations):
"""
:type equations: List[str]
:rtype: bool
"""
def find(v):
if parent[v] == v:
return v
return find(parent[v])
def union(v1,v2):
p1 = find(v1)
p2 = find(v2)
if p1 < p2:
parent[p2] = p1
else:
parent[p1] = p2
parent = [i for i in range(26)]
uneuqal = []
while len(equations) > 0:
item = equations.pop(0)
if item[1] == ‘!‘:
uneuqal.append(item)
else:
union(ord(item[0]) - ord(‘a‘),ord(item[3]) - ord(‘a‘))
for item in uneuqal:
if find(ord(item[0]) - ord(‘a‘)) == find(ord(item[3]) - ord(‘a‘)):
return False
return True
(编辑:李大同)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|