Since the exponials are really big,they can be a bit unwieldy to work with. Therefore?we would like you to write a program which computes exponial(n) mod m (the remainder of?exponial(n) when dividing by m).
NCPC2016-E- Exponial
发布时间:2020-12-14 04:20:21 所属栏目:大数据 来源:网络整理
导读:题目描述 Illustration of exponial(3) (not to scale),Picture by?C.M. de Talleyrand-Périgord via Wikimedia Commons?Everybody loves big numbers (if you do not,you might want to?stop reading at this point). There are many ways of constructing
题目描述Since the exponials are really big,they can be a bit unwieldy to work with. Therefore?we would like you to write a program which computes exponial(n) mod m (the remainder of?exponial(n) when dividing by m). 输入
The input consists of two integers n (1 ≤ n ≤ 109?) and m (1 ≤ m ≤ 109?).
输出
Output a single integer,the value of exponial(n) mod m.
样例输入2 42
样例输出2
a^b %c= a^(b%phi(c)+phi(c)) %c (b>=phi(c)) 如果 phi(c)>b 直接 a^b%c #include <bits/stdc++.h> #define ll long long using namespace std; ll fi(ll n) { ll ans=n; for (int i=2;i*i<=n;i++) { if (n%i==0) { ans-=ans/i; while (n%i==0) n/=i; } } if (n>1) ans-=ans/n; return ans; } ll qpow(ll a,ll n,ll m) { a%=m; ll ret = 1; while(n) { if (n&1) ret=ret*a%m; a=a*a%m; n>>=1; } return ret; } ll f(ll n,ll m) { if (m==1) return 0; if (n==1) return 1; if (n==2) return 2%m; if (n==3) return 9%m; if (n==4) return 262144%m; return qpow(n,f(n-1,fi(m)) % fi(m) + fi(m),m); } int main() { ll n,m; while(cin >> n >> m) { cout << f(n,m) << endl; } return 0; } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |