uva 10862 uva 10334 uva 10359 uva 10918 (大数+递推)
发布时间:2020-12-14 02:50:09 所属栏目:大数据 来源:网络整理
导读:10334是fib,不说了。 10862: 题意: 给n个房子,让他们和一个信号站连,求连法。 解析: 设f[n]代表n个房子的连法。 ???????????? O 房子堆n-1? 房子n 到达当前决策n时,房子n可以连圈,则此时连法是f[n -1],可以连房子堆n-1,连法也是f[n - 1]。 还有一
10334是fib,不说了。 10862: 题意: 给n个房子,让他们和一个信号站连,求连法。 解析: 设f[n]代表n个房子的连法。 ???????????? O 房子堆n-1? 房子n 到达当前决策n时,房子n可以连圈,则此时连法是f[n -1],可以连房子堆n-1,连法也是f[n - 1]。 还有一种连法就是房子n与房子n-1,圈圈O都相连,此时影响到前面的决策,即房子n-2不能与O相连,则连法f[n -1 ] - f[n - 2]。 和:3 * f[n-1] - f[n-2] 代码: #include <cstdio> #include <iostream> #include <cstring> #include <climits> #include <cassert> using namespace std; #define maxn 30000 struct bign { long long len,s[maxn]; bign() { memset(s,sizeof(s)); len = 1; } bign(long long num) { *this = num; } bign(const char* num) { *this = num; } bign operator = (long long num) { char s[maxn]; sprintf(s,"%d",num); *this = s; return *this; } bign operator = (const char* num) { len = strlen(num); for (long long i = 0; i < len; i++) s[i] = num[len-i-1] - '0'; return *this; } string str() const { string res = ""; for (long long i = 0; i < len; i++) res = (char)(s[i] + '0') + res; if (res == "") res = "0"; return res; } /*去除前导0*/ void clean() { while(len > 1 && !s[len-1]) len--; } /*高精度的加法*/ bign operator + (const bign& b) const { bign c; c.len = 0; for (long long i = 0,g = 0; g || i < max(len,b.len); i++) { long long x = g; if (i < len) x += s[i]; if (i < b.len) x += b.s[i]; c.s[c.len++] = x % 10; g = x / 10; } return c; } /*高精度的减法*/ bign operator - (const bign& b) { bign c; c.len = 0; for (long long i = 0,g = 0; i < len; i++) { long long x = s[i] - g; if (i < b.len) x -= b.s[i]; if (x >= 0) g = 0; else { g = 1; x += 10; } c.s[c.len++] = x; } c.clean(); return c; } /*高精度的乘法*/ bign operator * (const bign& b) { bign c; c.len = len + b.len; for (long long i = 0; i < len; i++) for (long long j = 0; j < b.len; j++) c.s[i+j] += s[i] * b.s[j]; for (long long i = 0; i < c.len-1; i++) { c.s[i+1] += c.s[i] / 10; c.s[i] %= 10; } c.clean(); return c; } /*高精度除以低精度*/ /*用到除法和取余的时候可能需要把全局的int替换成long long*/ bign operator / (long long b) const { assert(b > 0); bign c; c.len = len; for (long long i = len-1,g = 0; i >= 0; --i) { long long x = 10*g+s[i]; //这里可能会超过int 故用long long c.s[i] = x/b; //这里可能会超过int g = x-c.s[i]*b; //这里可能会超过int } c.clean(); return c; } /*高精度对低精度取余*/ /*用到除法和取余的时候可能需要把全局的int替换成long long*/ bign operator % (long long b) { assert(b > 0); bign d = b; bign c = *this-*this/b*d; return c; } bool operator < (const bign& b) const { if (len != b.len) return len < b.len; for (long long i = len-1; i >= 0; i--) if (s[i] != b.s[i]) return s[i] < b.s[i]; return false; } bool operator > (const bign& b) const { return b < *this; } bool operator <= (const bign& b) { return !(b > *this); } bool operator >= (const bign& b) { return !(b < *this); } bool operator == (const bign& b) { return !(b < *this) && !(*this < b); } bool operator != (const bign& b) { return (b < *this) || (*this < b); } bign operator += (const bign& b) { *this = *this + b; return *this; } }; istream& operator >> (istream &in,bign& x) { string s; in >> s; x = s.c_str(); return in; } ostream& operator << (ostream &out,const bign& x) { out << x.str(); return out; } bign f[2000 + 10]; void init() { f[1] = 1,f[2] = 3; bign three = 3; for (int i = 3; i <= 2000; i++) f[i] = three * f[i - 1] - f[i - 2]; } int main() { #ifdef LOCAL freopen("in.txt","r",stdin); #endif init(); int n; while (cin >> n && n) cout << f[n] << endl; } 10359: 题意: 用1*1和1*2的瓷砖,问能贴几个n*2的方格。 解析: 当前格,加1格得到:f(n-1)种方法,加2格得到:2 * f(n-2)种方法。 0的时候输出1,。。。。。。。。。。。。。。。。。 代码: #include <cstdio> #include <iostream> #include <cstring> #include <climits> #include <cassert> using namespace std; #define maxn 30000 struct bign { long long len,const bign& x) { out << x.str(); return out; } bign f[250 + 10]; void init() { f[0] = 1; f[1] = 1,f[2] = 3; bign two = 2; for (int i = 3; i <= 250; i++) f[i] = two * f[i - 2] + f[i - 1]; } int main() { #ifdef LOCAL freopen("in.txt",stdin); #endif init(); int n; while (cin >> n) cout << f[n] << endl; }
题意: 给n,求用1*2的瓷砖有多少种方法能谱n*3的矩形。 解析: 奇数无解,当前选择,由n-2的瓷砖得来,有3 * f(n-2)种方法,若由n-4的瓷砖得来(f(n-2) - f(n-4))种方法。 代码: #include <cstdio> #include <iostream> #include <cstring> #include <climits> #include <cassert> using namespace std; #define maxn 30000 struct bign { long long len,const bign& x) { out << x.str(); return out; } bign f[30 + 10]; void init() { f[0] = 1; f[2] = 3; bign four = 4; for (int i = 4; i <= 30; i++) f[i] = four * f[i - 2] - f[i - 4]; } int main() { #ifdef LOCAL freopen("in.txt",stdin); #endif init(); int n; while (cin >> n && n != -1) cout << f[n] << endl; } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |