[ZJOI 2013] bzoj3110 K大数查询 (整体二分)
|
昨天晚上写了一道最裸的cdq分治的题陌上花开,自己做出来的,感觉又有了一定的领悟。感觉其实cdq分治就相当于主席树的用处,主席树又叫函数式线段树,顾名思义可以拿来当一个函数用,相当于建出来之后就一劳永逸了,来一个询问解决一个。但是有些题目并不要求在线,所以并不需要把一整个主席树都建出来,而是每次都在线地去找它的前缀,然后cdq分治保证了每个点都有不超过logn个前缀,并且在计算i的时候它的前缀已经全部处理完了。 所以说cdq分治是很节约空间的。可以把O(nlogn)的空间强力降到O(n)。网上很多人说cdq的内存是nlogn的,我真的很奇怪,整个程序都没有动态开内存,全局数组开了多少自己还不知道吗。。 比如说陌上花开一题,每个花有三个属性,对每个花求有多少花三个属性都不超过它。常规解法是排序之后树状数组套treap或者主席树,然后扫描。cdq分治的话分治套树状数组就可以了,先按a排序,每一次分治用划分的思想将b划分开,然后c用树状数组来求前缀和。 这道题稍微难一点。我开始的时候想了一下数据结构解法,应该是外面一个线段树里面一个主席树。线段树的话涉及区间修改需要打标记,比较麻烦,可以用支持区间修改区间查询的树状数组来代替。由于时间不是很充足,只是自己YY了一下,不知道能不能实现。 分治的做法比较给力。首先其实这个应该叫整体二分,并不是传统的cdq分治。一般的cdq分治不断划分就行了,但是这个整体二分在划分的基础上还有个二分答案。把修改和询问先按时间顺序排好(其实就是输入顺序),划分的时候按照修改可能给出的影响以及询问可能的答案区间来分。由于并不一定对半分,l2不能直接设为mid+1,需要开两个栈来保持,也可以像我这样l1正着走,l2倒着走,然后再reverse。
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 50010;
#define rep(i,a,b) for(int i=a;i<=b;++i)
int N,M;
namespace BIT
{
int c1[MAXN],c2[MAXN];
inline void add(int*c,int i,int b)
{
for (; i<=N; i+=i&-i)
c[i] += b;
}
inline int sum(int*c,int i)
{
int r = 0;
for (; i>0; i-=i&-i)
r += c[i];
return r;
}
inline void add(int l,int r,int c)
{
add(c1,l,c),add(c1,r+1,-c);
add(c2,-c*(l-1)),add(c2,c*r);
}
inline int pre(int i)
{
if (!i) return 0;
return sum(c1,i)*i + sum(c2,i);
}
inline int sum(int l,int r)
{
return pre(r) - pre(l-1);
}
};
struct dot
{
int l,r,c,tp,id;
void get(int _id) {
id = _id;
scanf("%d%d%d%d",&tp,&l,&r,&c);
}
} po[MAXN],np[MAXN];
int ans[MAXN];
void cdq(int L,int R,int l,int r)
{
using namespace BIT;
if (L > R) return;
if (l == r)
{
rep(i,L,R) if (po[i].tp == 2) ans[po[i].id] = l;
return;
}
int mid = (l + r) >> 1;
int l1 = L,l2 = R;
rep(i,R)
{
if (po[i].tp == 1)
{
if (po[i].c <= mid)
np[l1++] = po[i];
else
{
np[l2--] = po[i];
add(po[i].l,po[i].r,1);
}
}
else
{
int cnt = sum(po[i].l,po[i].r);
if (cnt < po[i].c)
{
po[i].c -= cnt;
np[l1++] = po[i];
}
else np[l2--] = po[i];
}
}
reverse(np+l2+1,np+R+1);
rep(i,R)
{
po[i] = np[i];
if (po[i].tp==1 && po[i].c>mid)
add(po[i].l,-1);
}
cdq(L,l1-1,mid);
cdq(l1,R,mid+1,r);
}
bool has[MAXN];
int main()
{
scanf("%d%d",&N,&M);
rep(i,1,M) po[i].get(i),po[i].tp==2&&(has[i]=1);
cdq(1,M,N);
rep(i,M) if (has[i]==1) printf("%dn",ans[i]);
return 0;
}
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
