有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
[ZJOI 2013] bzoj3110 K大数查询 【树套树】
DescriptionInput第一行N,M Output输出每个询问的结果 Sample Input
2 5
1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2 3 Sample Output
1
2 1 HINT
N,M<=50000,N,M<=50000 树套树入门题 算法不难?但是第一次写的话感觉不好写。。orz。。 知识点很多啊。。 外层权值线段树。。内层区间线段树。。懒惰标记永久化 引自表姐博客 """ 第一想法是外层线段树内层treap名次树。。嗯这样写的话大概就是个暴力 ?= = TLE不说。。内存估计都要爆(即使有512M内存) """ 贴表姐代码(勿交,因为数据加强了。。)
#include <cstdio> #include <iostream> #define lch (u << 1) #define rch (u << 1 | 1) using namespace std; int ReadInt() { int x = 0,sign = 1; char ch = getchar(); while(ch < '0' || ch > '9') { if(ch == '-') sign = -1; ch = getchar(); } while(ch >= '0' && ch <= '9') {x = x*10 + ch-'0'; ch = getchar();} return x*sign; } const int maxn = 50000+5; const int maxm = 360 * maxn; int N,M; int root[3*maxn]; // 外层线段树 int sum[maxm],lazy[maxm],lc[maxm],rc[maxm]; // 内层线段树 int size; void insert(int u,int l,int r,int L,int R) { // 内层线段树 if(l == L && r == R) { sum[u] += r-l+1; lazy[u]++; return; } int mid = (l + r) >> 1; if(R <= mid) insert(lc[u] ? lc[u] : lc[u] = ++size,l,mid,L,R); else if(L > mid) insert(rc[u] ? rc[u] : rc[u] = ++size,mid+1,r,R); else { insert(lc[u] ? lc[u] : lc[u] = ++size,mid); insert(rc[u] ? rc[u] : rc[u] = ++size,R); } sum[u] += R - L + 1; } void add(int u,int R,int x) { // 外层线段树 insert(root[u] ? root[u] : root[u] = ++size,1,R); if(l == r) return; int mid = (l + r) >> 1; if(x <= mid) add(lch,R,x); else add(rch,x); } int count(int u,int R) { // 内层线段树 if(l == L && r == R) return sum[u]; int mid = (l + r) >> 1,ans = 0; if(R <= mid) ans = count(lc[u],R); else if(L > mid) ans = count(rc[u],R); else { ans += count(lc[u],mid); ans += count(rc[u],R); } ans += (R - L + 1) * lazy[u]; return ans; } int query(int u,int x) { // 外层线段树 if(l == r) return l; int mid = (l + r) >> 1; int cnt = count(root[rch],R); if(cnt >= x) return query(rch,x); else return query(lch,x - cnt); } int main() { N = ReadInt(); M = ReadInt(); int type,a,b,c; while(M--) { type = ReadInt(); a = ReadInt(); b = ReadInt(); c = ReadInt(); if(type == 1) add(1,c); else printf("%dn",query(1,c)); } return 0; } 上面代码风格很好。。可以读懂。。然后给一份glk优化过的代码【可过】(部分非递归优化)
#include <cstdio> const int Maxn = 50000 + 10,MS = Maxn << 8; int root[Maxn << 2],ls[MS],rs[MS],tot,M; long long Cnt[MS],ly[MS]; //线段树的外层为权值,内层为区间 int Ina; char Inc; bool InSign; inline int geti() { InSign = 0; while (Inc = getchar(),Inc < '0' || Inc > '9') InSign |= Inc == '-'; Ina = Inc - '0'; while (Inc = getchar(),Inc >= '0' && Inc <= '9') Ina = (Ina << 3) + (Ina << 1) + Inc - '0'; if (InSign) Ina = -Ina; return Ina; } void Insert(int &u,int x,int y) { //内层线段树 if (!u) u = ++tot; if (l >= x && r <= y) { Cnt[u] += r - l + 1; ++ly[u];//永久化懒惰标记 return; } int mid = (l + r) >> 1; if (y <= mid) Insert(ls[u],x,y); else if (x > mid) Insert(rs[u],mid + 1,y); else { Insert(ls[u],mid); Insert(rs[u],y); } Cnt[u] += y - x + 1; } void add(int x,int y,int val) { //外层线段树 权值线段树 int l = 1,r = N,u = 1,mid; while (true) { Insert(root[u],y);// if (l == r) break; //边界 mid = (l + r) >> 1; u <<= 1; if (val <= mid) r = mid; else l = mid + 1,u |= 1; } } long long Count(int u,int y) { if (l >= x && r <= y) return Cnt[u]; int mid = (l + r) >> 1; long long ans = 0; if (y <= mid) ans = Count(ls[u],y); else if (x > mid) ans = Count(rs[u],y); else ans = Count(ls[u],mid) + Count(rs[u],y); ans += (y - x + 1) * ly[u]; return ans; } int query(int x,long long val) { int l = 1,u = 1; long long tmp; while (true) { if (l == r) return l; mid = (l + r) >> 1; tmp = Count(root[u << 1 | 1],y); if (tmp >= val) l = mid + 1,u = u << 1 | 1; else r = mid,u = u << 1,val -= tmp; } } int main() { N = geti(),M = geti(); int type,b; long long c; while (M--) { type = geti(),a = geti(),b = geti(),c = geti(); if (type < 2) add(a,c); else printf("%dn",query(a,c)); } return 0; } 好像还有其他做法。。暂时先贴这个。。什么CDQ分治整体二分我有空再去看qwq 我的代码比较丑=。=
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> using namespace std; typedef long long LL; int Ina; char Inc; bool InSign; inline int read() { InSign = 0; while (Inc = getchar(),Inc >= '0' && Inc <= '9') Ina = (Ina << 3) + (Ina << 1) + Inc - '0'; if (InSign) Ina = -Ina; return Ina; } int n,m; const int Maxn = 50000 + 10,tot; long long cnt[MS],ly[MS]; //线段树的外层为权值,内层为区间 void insert(int& u,int y) { if(!u)u = ++tot; if(l>=x&&r<=y){ cnt[u] += r-l+1;++ly[u];return;} int mid = (l+r)>>1; if(y<=mid)insert(ls[u],y); else if(x>mid)insert(rs[u],y); else { insert(ls[u],mid); insert(rs[u],y); } cnt[u] += y - x + 1; } /* void add(int x,LL v) { insert(root[u] ? root[u] : root[u] = ++size,n,R); if(l==r) return; int mid = (l+r)>>1; if(x<=mid)add(u<<1,x); else add(u<<1|1,x); } */ void add(int x,int v) { int l=1,r=n,u=1,mid; while(true) { insert(root[u],y); if(l==r)break; mid = (l+r)>>1;u<<=1; if(v<=mid)r = mid; else l = mid+1,u|=1; } } LL Count(int u,int y) { if(l>=x&&r<=y)return cnt[u]; int mid = (l+r)>>1;LL ans = 0; if(y<=mid)ans = Count(ls[u],y); else if(x>mid)ans = Count(rs[u],y); else ans = Count(ls[u],y); ans += (y-x+1)*ly[u];//懒惰标记永久化了 return ans; } /* 递归版: int query(int u,int x) { // 外层线段树 if(l == r) return l; int mid = (l + r) >> 1; int cnt = count(root[rch],R); if(cnt >= x) return query(rch,x); else return query(lch,x - cnt); } */ int query(int x,LL v) { int l = 1,r = n,u = 1;LL tmp; while(true) { if(l==r)return l; mid = (l+r)>>1; tmp = Count(root[u<<1|1],y); if(tmp>=v)l=mid+1,u=u<<1|1; else r=mid,u=u<<1,v-=tmp; } } int main(void) { n = read(),m = read(); int type,b;LL c; for(int i=1;i<=m;i++) { type = read(),a = read(),b = read(),c = read(); if(type == 1)add(a,c); else printf("%dn",c)); } return 0; } 下面是其他解法。。 STL暴力大法 http://blog.csdn.net/qq_21110267/article/details/44514709 #include <cstdio> #include <vector> #include <algorithm> using namespace std; const int maxn = 50000 + 10; struct opt { int i,k,c; bool operator < (const opt& rhs) const { if(c == rhs.c) return i < rhs.i; return c > rhs.c; } }A[maxn]; vector<opt> T; int ID[maxn]; bool ins[maxn]; int main() { int n,m; scanf("%d %d",&n,&m); for(int i = 1; i <= m; i++) { int k,c; scanf("%d %d %d %d",&k,&a,&b,&c); A[i] = (opt){i,c}; if(k == 1) T.push_back(A[i]); } sort(T.begin(),T.end()); for(int i = 0; i < T.size(); i++) ID[T[i].i] = i; for(int i = 1; i <= m; i++) if(A[i].k == 1) ins[ID[i]] = 1; else { int j,c = 0; for(j = 0; j < T.size(); j++) if(ins[j]) { int len = min(A[i].b,T[j].b) - max(A[i].a,T[j].a) + 1; if(len <= 0) continue; if((c += len) >= A[i].c) break; } printf("%dn",T[j].c); } return 0; } 整体二分 http://blog.csdn.net/qq_21841245/article/details/44906735 #include "cstdio" #define lowbit(x) (x & (-x)) using namespace std; const int Nmax = 50005; int N,M; struct Option{ int sign,y,c; }op[Nmax]; int tot = -1,ans[Nmax]; int q[Nmax],tmp[2][Nmax]; namespace BIT{ int t[Nmax][2],d[Nmax][2]; void update(bool s,int pos,int c) { for (int i = pos; i <= N; i += lowbit(i)) { if (t[i][s] != tot) { t[i][s] = tot; d[i][s] = 0; } d[i][s] += c; } } int get_sum(bool s,int pos) { int res = 0; for (int i = pos; i; i -= lowbit(i)) { if (t[i][s] != tot) { t[i][s] = tot; d[i][s] = 0; } res += d[i][s]; } return res; } void Add(int x,int y) { update(0,1); update(0,y + 1,-1); update(1,x); update(1,-(y + 1)); } int Query(int x,int y) { int temp = get_sum(0,y) * (y + 1) - get_sum(1,y); temp -= get_sum(0,x - 1) * x - get_sum(1,x - 1); return temp; } } void solve(int L,int r) { if (L > R) return; ++tot; int mid = (l + r) >> 1; if (l == r) { for (int i = L; i <= R; ++i) if (op[q[i]].sign == 2) ans[q[i]] = mid; return; } tmp[0][0] = tmp[1][0] = 0; using namespace BIT; for (int i = L; i <= R; ++i) { int temp = q[i]; if (op[temp].sign == 1) { if (op[temp].c <= mid) tmp[0][++tmp[0][0]] = temp; else { tmp[1][++tmp[1][0]] = temp; Add(op[temp].x,op[temp].y); } } else { int cnt = Query(op[temp].x,op[temp].y); if (cnt < op[temp].c) { op[temp].c -= cnt; tmp[0][++tmp[0][0]] = temp; } else tmp[1][++tmp[1][0]] = temp; } } int tl = L,t2 = L + tmp[0][0] - 1; for (int i = 1; i <= tmp[0][0]; ++i) q[tl++] = tmp[0][i]; for (int i = 1; i <= tmp[1][0]; ++i) q[tl++] = tmp[1][i]; solve(L,t2,mid); solve(t2 + 1,r); } int main() { scanf("%d%d",&N,&M); for (int i = 1; i <= M; ++i) { scanf("%d%d%d%d",&op[i].sign,&op[i].x,&op[i].y,&op[i].c); q[i] = i; } solve(1,M,N); for (int i = 1; i <= M; ++i) { if (op[i].sign == 2) printf("%dn",ans[i]); } return 0; } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |