加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 百科 > 正文

c – 容器使用的内部类型的内存分配

发布时间:2020-12-16 03:41:33 所属栏目:百科 来源:网络整理
导读:C 11标准在一般集装箱要求中有以下几行. (23.2.1 – 3) For the components affected by this subclause that declare an allocator_type,objects stored in these components shall be constructed using the allocator_traits::construct function and des
C 11标准在一般集装箱要求中有以下几行.

(23.2.1 – 3)

For the components affected by this subclause that declare an allocator_type,objects stored in these components shall be constructed using the allocator_traits::construct function and destroyed using the allocator_traits::destroy function (20.6.8.2). These functions are called only for the container’s element type,not for internal types used by the container

(23.2.1 – 7)

Unless otherwise specified,all containers defined in this clause obtain memory using an allocator

是否真的,容器使用的所有内存都是由指定的分配器分配的?因为标准说内部类型不是用allocator_traits :: construct构造的,所以应该对operator new进行某种调用.但是标准也说这个子句中定义的所有容器都使用分配器来获取内存,在我看来这意味着它不能是普通的新运算符,它必须是放置新的运算符.我对么?

让我举个例子,为什么这很重要.

假设我们有一个类,它包含一些已分配的内存:

#include <unordered_map>
#include <iostream>
#include <cstdint>
#include <limits>
#include <memory>
#include <new>

class Arena
{
public:
        Arena(std::size_t size)
        {
                size_     = size;
                location_ = 0;

                data_ = nullptr;
                if(size_ > 0)
                        data_ = new(std::nothrow) uint8_t[size_];
        }
        Arena(const Arena& other) = delete;
        ~Arena()
        {
                if(data_ != nullptr)
                        delete[] data_;
        }
        Arena& operator =(const Arena& arena) = delete;

        uint8_t* allocate(std::size_t size)
        {
                if(data_ == nullptr)
                        throw std::bad_alloc();

                if((location_ + size) >= size_)
                        throw std::bad_alloc();

                uint8_t* result = &data_[location_];
                location_ += size;
                return result;
        }

        void clear()
        {
                location_ = 0;
        }

        std::size_t getNumBytesUsed() const
        {
                return location_;
        }

private:
        uint8_t* data_;
        std::size_t location_,size_;

};

我们也有自定义分配器:

template <class T> class FastAllocator
{
public:
        typedef T value_type;

        typedef T*       pointer;
        typedef const T* const_pointer;

        typedef T&       reference;
        typedef const T& const_reference;

        typedef std::size_t    size_type;
        typedef std::ptrdiff_t difference_type;

        template <class U> class rebind
        {
        public:
                typedef FastAllocator<U> other;

        };

        Arena* arena;

        FastAllocator(Arena& arena_): arena(&arena_) {}
        FastAllocator(const FastAllocator& other): arena(other.arena) {}
        template <class U> FastAllocator(const FastAllocator<U>& other): arena(other.arena) {}

        //------------------------------------------------------------------------------------
        pointer allocate(size_type n,std::allocator<void>::const_pointer)
        {
                return allocate(n);
        }
        pointer allocate(size_type n)
        {
                return reinterpret_cast<pointer>(arena->allocate(n * sizeof(T)));
        }

        //------------------------------------------------------------------------------------
        void deallocate(pointer,size_type) {}

        //------------------------------------------------------------------------------------
        size_type max_size() const
        {
                return std::numeric_limits<size_type>::max();
        }

        //------------------------------------------------------------------------------------
        void construct(pointer p,const_reference val)
        {
                ::new(static_cast<void*>(p)) T(val);
        }
        template <class U> void destroy(U* p)
        {
                p->~U();
        }

};

这就是我们使用它的方式:

typedef std::unordered_map<uint32_t,uint32_t,std::hash<uint32_t>,std::equal_to<uint32_t>,FastAllocator<std::pair<uint32_t,uint32_t>>> FastUnorderedMap;

int main()
{
        // Allocate memory in arena
        Arena arena(1024 * 1024 * 50);
        FastAllocator<uint32_t> allocator(arena);
        FastAllocator<std::pair<uint32_t,uint32_t>> pairAllocator(arena);
        FastAllocator<FastUnorderedMap> unorderedMapAllocator(arena);

        FastUnorderedMap* fastUnorderedMap = nullptr;

        try
        {
                // allocate memory for unordered map
                fastUnorderedMap = unorderedMapAllocator.allocate(1);

                // construct unordered map
                fastUnorderedMap =
                        new(reinterpret_cast<void*>(fastUnorderedMap)) FastUnorderedMap
                        (
                                0,std::hash<uint32_t>(),std::equal_to<uint32_t>(),pairAllocator
                        );

                // insert something
                for(uint32_t i = 0; i < 1000000; ++i)
                        fastUnorderedMap->insert(std::make_pair(i,i));
        }
        catch(std::bad_alloc badAlloc)
        {
                std::cout << "--- BAD ALLOC HAPPENED DURING FAST UNORDERED MAP INSERTION ---" << std::endl;
        }

        // no destructor of unordered map is called!!!!
        return 0;
}

如您所见,unordered_map的析构函数永远不会被调用,但在破坏竞技场对象期间会释放内存.会有任何内存泄漏吗?为什么?

我真的很感激这个主题的任何帮助.

解决方法

分配器应该提供4个功能(这里感兴趣):

> 2用于内存管理:分配/解除分配
> 2用于对象生存期管理:construct / destroy

引用中的这些函数仅适用于构造和销毁(在前一句中提到),而不是分配/解除分配,因此没有矛盾.

现在,关于内存泄漏,竞技场分配器不仅应该使用竞技场分配器(容器保证)来构建容器中的对象,而且还应该从该分配器获得这些对象分配的所有内存;不幸的是,这会变得稍微复杂一些.

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读