用于识别C#中手写数字的神经网络
发布时间:2020-12-15 22:17:11 所属栏目:百科 来源:网络整理
导读:我已经通过一个名为Vietdungiitb的代码项目撰稿人,完成了关于C#中手写数字识别神经网络的非常好的代码项目文章. 这是项目的链接: http://www.codeproject.com/Articles/143059/Neural-Network-for-Recognition-of-Handwritten-Digi 但是,有一个代码示例提供
|
我已经通过一个名为Vietdungiitb的代码项目撰稿人,完成了关于C#中手写数字识别神经网络的非常好的代码项目文章.
这是项目的链接: http://www.codeproject.com/Articles/143059/Neural-Network-for-Recognition-of-Handwritten-Digi 但是,有一个代码示例提供,我运行代码,但我有这个错误’格式异常未处理’. 在Preferences.cs文件中. private void Get(string lpAppName,string lpKeyName,out double nDefault)
{
nDefault = Convert.ToDouble(m_Inifile.IniReadValue(lpAppName,lpKeyName));
return;
}
上面的代码行产生了运行时异常. System.FormatException was unhandled
HResult=-2146233033
Message=Input string was not in a correct format.
Source=mscorlib
StackTrace:
at System.Number.ParseDouble(String value,NumberStyles options,NumberFormatInfo numfmt)
at System.Convert.ToDouble(String value)
at NeuralNetworkLibrary.Preferences.Get(String lpAppName,String lpKeyName,Double& nDefault) in c:UsersPC_USERDownloadsExampleCode ProjectsourceHandwrittenRecognitionNeuralNetworkLibraryArchiveSerializationPreferences.cs:line 178
at NeuralNetworkLibrary.Preferences.ReadIniFile() in c:UsersPC_USERDownloadsExampleCode ProjectsourceHandwrittenRecognitionNeuralNetworkLibraryArchiveSerializationPreferences.cs:line 109
at NeuralNetworkLibrary.Preferences..ctor() in c:UsersPC_USERDownloadsExampleCode ProjectsourceHandwrittenRecognitionNeuralNetworkLibraryArchiveSerializationPreferences.cs:line 97
at HandwrittenRecogniration.Mainform..ctor() in c:UsersPC_USERDownloadsExampleCode ProjectsourceHandwrittenRecognitionHandwrittenRecognitionMainform.cs:line 66
at HandwrittenRecogniration.Program.Main() in c:UsersPC_USERDownloadsExampleCode ProjectsourceHandwrittenRecognitionHandwrittenRecognitionProgram.cs:line 18
at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly,String[] args)
at System.AppDomain.ExecuteAssembly(String assemblyFile,Evidence assemblySecurity,String[] args)
at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly()
at System.Threading.ThreadHelper.ThreadStart_Context(Object state)
at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext,ContextCallback callback,Object state,Boolean preserveSyncCtx)
at System.Threading.ExecutionContext.Run(ExecutionContext executionContext,Object state)
at System.Threading.ThreadHelper.ThreadStart()
InnerException:
没有为这个问题提供足够的答案.所以,我想知道当他们运行这个项目时是否有人遇到过这个问题? 完整的Preferences.cs如下. using System;
namespace NeuralNetworkLibrary
{
public class Preferences
{
public const int g_cImageSize = 28;
public const int g_cVectorSize = 29;
public int m_cNumBackpropThreads;
public uint m_nMagicTrainingLabels;
public uint m_nMagicTrainingImages;
public uint m_nItemsTrainingLabels;
public uint m_nItemsTrainingImages;
public int m_cNumTestingThreads;
public int m_nMagicTestingLabels;
public int m_nMagicTestingImages;
public uint m_nItemsTestingLabels;
public uint m_nItemsTestingImages;
public uint m_nRowsImages;
public uint m_nColsImages;
public int m_nMagWindowSize;
public int m_nMagWindowMagnification;
public double m_dInitialEtaLearningRate;
public double m_dLearningRateDecay;
public double m_dMinimumEtaLearningRate;
public uint m_nAfterEveryNBackprops;
// for limiting the step size in backpropagation,since we are using second order
// "Stochastic Diagonal Levenberg-Marquardt" update algorithm. See Yann LeCun 1998
// "Gradianet-Based Learning Applied to Document Recognition" at page 41
public double m_dMicronLimitParameter;
public uint m_nNumHessianPatterns;
// for distortions of the input image,in an attempt to improve generalization
public double m_dMaxScaling; // as a percentage,such as 20.0 for plus/minus 20%
public double m_dMaxRotation; // in degrees,such as 20.0 for plus/minus rotations of 20 degrees
public double m_dElasticSigma; // one sigma value for randomness in Simard's elastic distortions
public double m_dElasticScaling; // after-smoohting scale factor for Simard's elastic distortions
private IniFile m_Inifile;
////////////
public Preferences()
{
// set default values
m_nMagicTrainingLabels = 0x00000801;
m_nMagicTrainingImages = 0x00000803;
m_nItemsTrainingLabels = 60000;
m_nItemsTrainingImages = 60000;
m_nMagicTestingLabels = 0x00000801;
m_nMagicTestingImages = 0x00000803;
m_nItemsTestingLabels = 10000;
m_nItemsTestingImages = 10000;
m_nRowsImages = g_cImageSize;
m_nColsImages = g_cImageSize;
m_nMagWindowSize = 5;
m_nMagWindowMagnification = 8;
m_dInitialEtaLearningRate = 0.001;
m_dLearningRateDecay = 0.794328235; // 0.794328235 = 0.001 down to 0.00001 in 20 epochs
m_dMinimumEtaLearningRate = 0.00001;
m_nAfterEveryNBackprops = 60000;
m_cNumBackpropThreads = 2;
m_cNumTestingThreads = 1;
// parameters for controlling distortions of input image
m_dMaxScaling = 15.0; // like 20.0 for 20%
m_dMaxRotation = 15.0; // like 20.0 for 20 degrees
m_dElasticSigma = 8.0; // higher numbers are more smooth and less distorted; Simard uses 4.0
m_dElasticScaling = 0.5; // higher numbers amplify the distortions; Simard uses 34 (sic,maybe 0.34 ??)
// for limiting the step size in backpropagation,since we are using second order
// "Stochastic Diagonal Levenberg-Marquardt" update algorithm. See Yann LeCun 1998
// "Gradient-Based Learning Applied to Document Recognition" at page 41
m_dMicronLimitParameter = 0.10; // since we divide by this,update can never be more than 10x current eta
m_nNumHessianPatterns = 500; // number of patterns used to calculate the diagonal Hessian
String path = System.IO.Directory.GetCurrentDirectory() + "DataDefault-ini.ini";
m_Inifile = new IniFile(path);
ReadIniFile();
}
public void ReadIniFile()
{
// now read values from the ini file
String tSection;
// Neural Network parameters
tSection = "Neural Network Parameters";
Get(tSection,"Initial learning rate (eta)",out m_dInitialEtaLearningRate);
Get(tSection,"Minimum learning rate (eta)",out m_dMinimumEtaLearningRate);
Get(tSection,"Rate of decay for learning rate (eta)",out m_dLearningRateDecay);
Get(tSection,"Decay rate is applied after this number of backprops",out m_nAfterEveryNBackprops);
Get(tSection,"Number of backprop threads",out m_cNumBackpropThreads);
Get(tSection,"Number of testing threads",out m_cNumTestingThreads);
Get(tSection,"Number of patterns used to calculate Hessian",out m_nNumHessianPatterns);
Get(tSection,"Limiting divisor (micron) for learning rate amplification (like 0.10 for 10x limit)",out m_dMicronLimitParameter);
// Neural Network Viewer parameters
tSection = "Neural Net Viewer Parameters";
Get(tSection,"Size of magnification window",out m_nMagWindowSize);
Get(tSection,"Magnification factor for magnification window",out m_nMagWindowMagnification);
// MNIST data collection parameters
tSection = "MNIST Database Parameters";
Get(tSection,"Training images magic number",out m_nMagicTrainingImages);
Get(tSection,"Training images item count",out m_nItemsTrainingImages);
Get(tSection,"Training labels magic number",out m_nMagicTrainingLabels);
Get(tSection,"Training labels item count",out m_nItemsTrainingLabels);
Get(tSection,"Testing images magic number",out m_nMagicTestingImages);
Get(tSection,"Testing images item count",out m_nItemsTestingImages);
Get(tSection,"Testing labels magic number",out m_nMagicTestingLabels);
Get(tSection,"Testing labels item count",out m_nItemsTestingLabels);
// these two are basically ignored
uint uiCount = g_cImageSize;
Get(tSection,"Rows per image",out uiCount);
m_nRowsImages = uiCount;
uiCount = g_cImageSize;
Get(tSection,"Columns per image",out uiCount);
m_nColsImages = uiCount;
// parameters for controlling pattern distortion during backpropagation
tSection = "Parameters for Controlling Pattern Distortion During Backpropagation";
Get(tSection,"Maximum scale factor change (percent,like 20.0 for 20%)",out m_dMaxScaling);
Get(tSection,"Maximum rotational change (degrees,like 20.0 for 20 degrees)",out m_dMaxRotation);
Get(tSection,"Sigma for elastic distortions (higher numbers are more smooth and less distorted; Simard uses 4.0)",out m_dElasticSigma);
Get(tSection,"Scaling for elastic distortions (higher numbers amplify distortions; Simard uses 0.34)",out m_dElasticScaling);
}
private void Get(string lpAppName,out int nDefault)
{
nDefault = Convert.ToInt32(m_Inifile.IniReadValue(lpAppName,lpKeyName));
return;
}
private void Get(string lpAppName,out uint nDefault)
{
nDefault = Convert.ToUInt32(m_Inifile.IniReadValue(lpAppName,lpKeyName));
return;
}
private void Get(string lpAppName,out double nDefault)
{
nDefault = Convert.ToDouble(m_Inifile.IniReadValue(lpAppName,lpKeyName));
return;
}
private void Get(string lpAppName,out byte nDefault)
{
nDefault = Convert.ToByte(m_Inifile.IniReadValue(lpAppName,lpKeyName));
return ;
}
private void Get(string lpAppName,out string nDefault)
{
nDefault = m_Inifile.IniReadValue(lpAppName,lpKeyName);
return;
}
private void Get(string lpAppName,out bool nDefault)
{
nDefault = Convert.ToBoolean(m_Inifile.IniReadValue(lpAppName,lpKeyName));
return;
}
}
}
解决方法
在这种情况下,问题出在默认.ini文件的小数点.
nDefault = Convert.ToDouble(m_Inifile.IniReadValue(lpAppName,lpKeyName),CultureInfo.InvariantCulture); (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
