NoSQL数据库探讨 -- 非关系型数据库
随着互联网web2.0网站的兴起,非关系型的数据库现在成了一个极其热门的新领域, 非关系数据库产品的发展非常迅速。而传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不 从心,暴露了很多难以克服的问题,例如: 1、High performance - 对数据库高并发读写的需求 2、Huge Storage - 对海量数据的高效率存储和访问的需求 3、High Scalability && High Availability- 对数据库的高可扩展性和高可用性的需求 在上面提到的“三高”需求面前,关系数据库遇到了难以克服的障碍,而对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地,例如: 1、数据库事务一致性需求 2、数据库的写实时性和读实时性需求 3、对复杂的SQL查询,特别是多表关联查询的需求 因此,关系数据库在这些越来越多的应用场景下显得不那么合适了,为了解决这类问题的非关系数据库应运而生,现在这两年,各种各样非关系数据库,特别是键值 数据库(Key-Value Store DB)风起云涌,多得让人眼花缭乱。前不久国外刚刚举办了NoSQL Conference,各路NoSQL数据库纷纷亮相,加上未亮相但是名声在外的,起码有超过10个开源的NoSQLDB,例如: Redis,Tokyo Cabinet,Cassandra,Voldemort,MongoDB,Dynomite,HBase,CouchDB,Hypertable, Riak,Tin, Flare, Lightcloud, KiokuDB,Scalaris, Kai, ThruDB , …… 这些NoSQL数据库,有的是用C/C++编写的,有的是用Java编写的,还有的是用Erlang编写的,每个都有自己的独到之处,看都看不过来了,这 些NoSQL数据库大致可以分为以下的三类: 一、满足极高读写性能需求的Kye-Value数据库:Redis,Tokyo Cabinet, Flare 高性能Key-Value数据库的主要特点就是具有极高的并发读写性能,Redis,Tokyo Cabinet, Flare,这3个Key-Value DB都是用C编写的,他们的性能都相当出色,但出了出色的性能,他们还有自己独特的功能: 1、Redis Redis的出色之处不仅仅是性能,Redis最大的魅力是支持保存List链表和Set集合的数据结构,而且还支持对List进行各种操作,例如从 List两端push和pop数据,取List区间,排序等等,对Set支持各种集合的并集交集操作,此外单个value的最大限制是1GB,不像 memcached只能保存1MB的数据,因此Redis可以用来实现很多有用的功能,比方说用他的List来做FIFO双向链表,实现一个轻量级的高性 能消息队列服务,用他的Set可以做高性能的tag系统等等。另外Redis也可以对存入的Key-Value设置expire时间,因此也可以被当作一 个功能加强版的memcached来用。 Redis的主要缺点是数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,并且它没有原生的可扩展机制,不具有scale(可扩展)能力,要 依赖客户端来实现分布式读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。目前使用Redis的网站有 github,Engine Yard。 2、Tokyo Cabinet和Tokoy Tyrant TC除了支持Key-Value存储之外,还支持保存Hashtable数据类型,因此很像一个简单的数据库表,并且还支持基于column的条件查询, 分页查询和排序功能,基本上相当于支持单表的基础查询功能了,所以可以简单的替代关系数据库的很多操作,这也是TC受到大家欢迎的主要原因之一,有一个 Ruby的项目miyazakiresistance将TT的hashtable的操作封装成和ActiveRecord一样的操作,用起来非常爽。 TC/TT在mixi的实际应用当中,存储了2000万条以上的数据,同时支撑了上万个并发连接,是一个久经考验的项目。TC在保证了极高的并发读写性能 的同时,具有可靠的数据持久化机制,同时还支持类似关系数据库表结构的hashtable以及简单的条件,分页和排序操作,是一个很棒的NoSQL数据 库。 TC主要的缺点是没有scale的能力,如果单机无法满足要求,只能通过主从复制的方式扩展,另外有人提到TC的性能会随着数据量的增加而下降,当数据量 上亿条以后,性能会有比较明显的下降。 这个是Tim Yang做的一个Memcached,Redis和Tokyo Tyrant的简单的性能评测,仅供参考 3、Flare flare唯一的缺点就是他只支持memcached协议,因此当你使用flare的时候,就不能使用TC的table数据结构了,只能使用TC的 key-value数据结构存储。 二、满足海量存储需求和访问的面向文档的数据库:MongoDB,CouchDB 面向文档的非关系数据库主要解决的问题不是高性能的并发读写,而是保证海量数据存储的同时,具有良好的查询性能。MongoDB是用C++开发的,而 CouchDB则是Erlang开发的: 1、MongoDB Mongo主要解决的是海量数据的访问效率问题,根据官方的文档,当数据量达到50GB以上的时候,Mongo的数据库访问速度是MySQL的10倍以 上。Mongo的并发读写效率不是特别出色,根据官方提供的性能测试表明,大约每秒可以处理0.5万-1.5次读写请求。 因为Mongo主要是支持海量数据存储的,所以Mongo还自带了一个出色的分布式文件系统GridFS,可以支持海量的数据存储,但我也看到有些评论认 为GridFS性能不佳,这一点还是有待亲自做点测试来验证了。 最后由于Mongo可以支持复杂的数据结构,而且带有强大的数据查询功能,因此非常受到欢迎,很多项目都考虑用MongoDB来替代MySQL来实现不是 特别复杂的Web应用,比方说why we migrated from MySQL to MongoDB就是一个真实的从MySQL迁移到MongoDB的案例,由于数据量实在太大,所以迁移到了Mongo上面,数据查询的速度得到了非常显著 的提升。 MongoDB也有一个ruby的项目MongoMapper,是模仿Merb的DataMapper编写的MongoDB的接口,使用起来非常简单,几 乎和DataMapper一模一样,功能非常强大易用。 2、CouchDB 三、满足高可扩展性和可用性的面向分布式计算的数据库:Cassandra,Voldemort 面向scale能力的数据库其实主要解决的问题领域和上述两类数据库还不太一样,它首先必须是一个分布式的数据库系统,由分布在不同节点上面的数据库共同 构成一个数据库服务系统,并且根据这种分布式架构来提供online的,具有弹性的可扩展能力,例如可以不停机的添加更多数据节点,删除数据节点等等。因 此像Cassandra常常被看成是一个开源版本的Google BigTable的替代品。Cassandra和Voldemort都是用Java开发的: 1、Cassandra Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra的一个写操作,会被复制到 其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能是比较简单的事情,只管在 群集里面添加节点就可以了。我看到有文章说Facebook的Cassandra群集有超过100台服务器构成的数据库群集。 Cassandra也支持比较丰富的数据结构和功能强大的查询语言,和MongoDB比较类似,查询功能比MongoDB稍弱一些,twitter的平台 架构部门领导Evan Weaver写了一篇文章介绍Cassandra:http://blog.evanweaver.com/articles/2009/07/06 /up-and-running-with-cassandra/,有非常详细的介绍。 Cassandra以单个节点来衡量,其节点的并发读写性能不是特别好,有文章说评测下来Cassandra每秒大约不到1万次读写请求,我也看到一些对 这个问题进行质疑的评论,但是评价Cassandra单个节点的性能是没有意义的,真实的分布式数据库访问系统必然是n多个节点构成的系统,其并发性能取 决于整个系统的节点数量,路由效率,而不仅仅是单节点的并发负载能力。 2、Voldemort 从Facebook开发Cassandra,Linkedin开发Voldemort,我们也可以大致看出国外大型SNS网站对于分布式数据库,特别是对 数据库的scale能力方面的需求是多么殷切。前面提到,web应用的架构当中,web层和app层相对来说都很容易横向扩展,唯有数据库是单点的,极难 scale,现在Facebook和Linkedin在非关系型数据库的分布式方面探索了一条很好的方向,这也是为什么现在Cassandra这么热门的 主要原因。 MongoDB CEO谈NoSQL的大数据量处理能力 http://database.51cto.com/art/201005/198041.htm (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |