加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > 安全 > 正文

scala – 如何为Spark结构化流编写JDBC Sink [SparkException:T

发布时间:2020-12-16 18:49:17 所属栏目:安全 来源:网络整理
导读:我需要一个JDBC接收器用于我的Spark结构化流数据帧.目前,据我所知,DataFrame的API缺少对JDBC实现的writeStream(在PySpark和 Scala(当前Spark版本2.2.0)中都没有).我发现的唯一建议是编写基于 this article的我自己的ForeachWriter Scala类. 因此,我通过添加
我需要一个JDBC接收器用于我的Spark结构化流数据帧.目前,据我所知,DataFrame的API缺少对JDBC实现的writeStream(在PySpark和 Scala(当前Spark版本2.2.0)中都没有).我发现的唯一建议是编写基于 this article的我自己的ForeachWriter Scala类.

因此,我通过添加自定义ForeachWriterclass修改了一个简单的字数统计示例,并尝试将writeStream写入PostgreSQL.单词流是从控制台手动生成的(使用NetCat:nc -lk -p 9999)并由Spark从套接字读取.

不幸的是,我得到“任务不可序列化”的错误.

APACHE_SPARK_VERSION = 2.1.0
使用Scala版本2.11.8(Java HotSpot(TM)64位服务器VM,Java 1.8.0_112)

我的Scala代码:

//Spark context available as 'sc' (master = local[*],app id = local-1501242382770).
//Spark session available as 'spark'.

import java.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.SparkSession

val spark = SparkSession
  .builder
  .master("local[*]")
  .appName("StructuredNetworkWordCountToJDBC")
  .config("spark.jars","/tmp/data/postgresql-42.1.1.jar")
  .getOrCreate()

import spark.implicits._

val lines = spark.readStream
  .format("socket")
  .option("host","localhost")
  .option("port",9999)
  .load()

val words = lines.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

class JDBCSink(url: String,user:String,pwd:String) extends org.apache.spark.sql.ForeachWriter[org.apache.spark.sql.Row]{
    val driver = "org.postgresql.Driver"
    var connection:java.sql.Connection = _
    var statement:java.sql.Statement = _

    def open(partitionId: Long,version: Long):Boolean = {
        Class.forName(driver)
        connection = java.sql.DriverManager.getConnection(url,user,pwd)
        statement = connection.createStatement
        true
    }

    def process(value: org.apache.spark.sql.Row): Unit = {        
    statement.executeUpdate("INSERT INTO public.test(col1,col2) " +
                             "VALUES ('" + value(0) + "'," + value(1) + ");")
    }

    def close(errorOrNull:Throwable):Unit = {
        connection.close
    }
}

val url="jdbc:postgresql://<mypostgreserver>:<port>/<mydb>"
val user="<user name>"
val pwd="<pass>"
val writer = new JDBCSink(url,pwd)

import org.apache.spark.sql.streaming.ProcessingTime

val query=wordCounts
  .writeStream
  .foreach(writer)
  .outputMode("complete")
  .trigger(ProcessingTime("25 seconds"))
  .start()

query.awaitTermination()

错误信息:

ERROR StreamExecution: Query [id = ef2e7a4c-0d64-4cad-ad4f-91d349f8575b,runId = a86902e6-d168-49d1-b7e7-084ce503ea68] terminated with error
org.apache.spark.SparkException: Task not serializable
        at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
        at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
        at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
        at org.apache.spark.SparkContext.clean(SparkContext.scala:2094)
        at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:924)
        at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:923)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
        at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:923)
        at org.apache.spark.sql.execution.streaming.ForeachSink.addBatch(ForeachSink.scala:49)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply$mcV$sp(StreamExecution.scala:503)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply(StreamExecution.scala:503)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply(StreamExecution.scala:503)
        at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262)
        at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46)
        at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch(StreamExecution.scala:502)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply$mcV$sp(StreamExecution.scala:255)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244)
        at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262)
        at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1.apply$mcZ$sp(StreamExecution.scala:244)
        at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:43)
        at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:239)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:177)
Caused by: java.io.NotSerializableException: org.apache.spark.sql.execution.streaming.StreamExecution
Serialization stack:
        - object not serializable (class: org.apache.spark.sql.execution.streaming.StreamExecution,value: Streaming Query [id = 9b01db99-9120-4047-b779-2e2e0b289f65,runId = e20beefa-146a-4139-96f9-de3d64ce048a] [state = TERMINATED])
        - field (class: $line21.$read$$iw$$iw,name: query,type: interface org.apache.spark.sql.streaming.StreamingQuery)
        - object (class $line21.$read$$iw$$iw,$line21.$read$$iw$$iw@24747e0f)
        - field (class: $line21.$read$$iw,name: $iw,type: class $line21.$read$$iw$$iw)
        - object (class $line21.$read$$iw,$line21.$read$$iw@1814ed19)
        - field (class: $line21.$read,type: class $line21.$read$$iw)
        - object (class $line21.$read,$line21.$read@13e62f5d)
        - field (class: $line25.$read$$iw,name: $line21$read,type: class $line21.$read)
        - object (class $line25.$read$$iw,$line25.$read$$iw@14240e5c)
        - field (class: $line25.$read$$iw$$iw,name: $outer,type: class $line25.$read$$iw)
        - object (class $line25.$read$$iw$$iw,$line25.$read$$iw$$iw@11e4c6f5)
        - field (class: $line25.$read$$iw$$iw$JDBCSink,type: class $line25.$read$$iw$$iw)
        - object (class $line25.$read$$iw$$iw$JDBCSink,$line25.$read$$iw$$iw$JDBCSink@6c096c84)
        - field (class: org.apache.spark.sql.execution.streaming.ForeachSink,name: org$apache$spark$sql$execution$streaming$ForeachSink$$writer,type: class org.apache.spark.sql.ForeachWriter)
        - object (class org.apache.spark.sql.execution.streaming.ForeachSink,org.apache.spark.sql.execution.streaming.ForeachSink@6feccb75)
        - field (class: org.apache.spark.sql.execution.streaming.ForeachSink$$anonfun$addBatch$1,type: class org.apache.spark.sql.execution.streaming.ForeachSink)
        - object (class org.apache.spark.sql.execution.streaming.ForeachSink$$anonfun$addBatch$1,<function1>)
        at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
        at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
        at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
        at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:295)
        ... 25 more

如何使它工作?

(感谢所有人,特别感谢@zsxwing的简单解决方案):

>将JDBCSink类保存到文件中.
>在spark-shell中加载一个类f.eg.使用scala> :load< path_to_a_JDBCSink.scala_file>
>最后scala> :粘贴没有JDBCSink类定义的代码.

解决方法

只需在一个单独的文件中定义JDBCSink,而不是将其定义为可以捕获外部引用的内部类.

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读