加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > 安全 > 正文

scala – 将IndexToString应用于Spark中的特征向量

发布时间:2020-12-16 18:14:15 所属栏目:安全 来源:网络整理
导读:上下文:我有一个数据框,其中所有分类值都已使用StringIndexer编制索引. val categoricalColumns = df.schema.collect { case StructField(name,StringType,nullable,meta) = name } val categoryIndexers = categoricalColumns.map { col = new StringIndex
上下文:我有一个数据框,其中所有分类值都已使用StringIndexer编制索引.

val categoricalColumns = df.schema.collect { case StructField(name,StringType,nullable,meta) => name }    

val categoryIndexers = categoricalColumns.map {
  col => new StringIndexer().setInputCol(col).setOutputCol(s"${col}Indexed") 
}

然后我使用VectorAssembler来矢量化所有要素列(包括索引的分类列).

val assembler = new VectorAssembler()
    .setInputCols(dfIndexed.columns.diff(List("label") ++ categoricalColumns))
    .setOutputCol("features")

应用分类器和一些额外的步骤后,我最终得到一个具有标签,功能和预测的数据框.我想将我的特征向量扩展为单独的列,以便将索引值转换回原始的String形式.

val categoryConverters = categoricalColumns.zip(categoryIndexers).map {
colAndIndexer => new IndexToString().setInputCol(s"${colAndIndexer._1}Indexed").setOutputCol(colAndIndexer._1).setLabels(colAndIndexer._2.fit(df).labels)
}

问题:是否有一种简单的方法可以做到这一点,或者是以某种方式将预测列附加到测试数据框的最佳方法?

我尝试过的:

val featureSlicers = categoricalColumns.map {
  col => new VectorSlicer().setInputCol("features").setOutputCol(s"${col}Indexed").setNames(Array(s"${col}Indexed"))
}

应用这个给了我想要的列,但是它们是Vector形式的(因为它意味着这样做)而不是Double类型.

编辑:
所需的输出是原始数据帧(即分类特征为字符串而非索引),附加列指示预测标签(在我的情况下为0或1).

例如,假设我的分类器的输出看起来像这样:

+-----+---------+----------+
|label| features|prediction|
+-----+---------+----------+
|  1.0|[0.0,3.0]|       1.0|
+-----+---------+----------+

通过在每个功能上应用VectorSlicer,我会得到:

+-----+---------+----------+-------------+-------------+
|label| features|prediction|statusIndexed|artistIndexed|
+-----+---------+----------+-------------+-------------+
|  1.0|[0.0,3.0]|       1.0|        [0.0]|        [3.0]|
+-----+---------+----------+-------------+-------------+

哪个好,但我需要:

+-----+---------+----------+-------------+-------------+
|label| features|prediction|statusIndexed|artistIndexed|
+-----+---------+----------+-------------+-------------+
|  1.0|[0.0,3.0]|       1.0|         0.0 |         3.0 |
+-----+---------+----------+-------------+-------------+

然后能够使用IndexToString并将其转换为:

+-----+---------+----------+-------------+-------------+
|label| features|prediction|    status   |    artist   |
+-----+---------+----------+-------------+-------------+
|  1.0|[0.0,3.0]|       1.0|        good |  Pink Floyd |
+-----+---------+----------+-------------+-------------+

甚至:

+-----+----------+-------------+-------------+
|label|prediction|    status   |    artist   |
+-----+----------+-------------+-------------+
|  1.0|       1.0|        good |  Pink Floyd |
+-----+----------+-------------+-------------+

解决方法

嗯,这不是一个非常有用的操作,但应该可以使用列元数据和简单的UDF提取所需的信息.我假设你的数据已经被创建了一个类似于这个的管道:

import org.apache.spark.ml.feature.{VectorSlicer,VectorAssembler,StringIndexer}
import org.apache.spark.ml.Pipeline

val df = sc.parallelize(Seq(
  (1L,"a","foo",1.0),(2L,"b","bar",2.0),(3L,3.0)
)).toDF("id","x1","x2","x3")

val featureCols = Array("x1","x3")
val featureColsIdx = featureCols.map(c => s"${c}_i")

val indexers = featureCols.map(
  c => new StringIndexer().setInputCol(c).setOutputCol(s"${c}_i")
)

val assembler = new VectorAssembler()
  .setInputCols(featureColsIdx)
  .setOutputCol("features")

val slicer = new VectorSlicer()
  .setInputCol("features")
  .setOutputCol("string_features")
  .setNames(featureColsIdx.init)


val transformed = new Pipeline()
  .setStages(indexers :+ assembler :+ slicer)
  .fit(df)
  .transform(df)

首先,我们可以从功能中提取所需的元数据:

val meta = transformed.select($"string_features")
  .schema.fields.head.metadata
  .getMetadata("ml_attr") 
  .getMetadata("attrs")
  .getMetadataArray("nominal")

并将其转换为更容易使用的东西

case class NominalMetadataWrapper(idx: Long,name: String,vals: Array[String])

// In general it could a good idea to make it a broadcast variable
val lookup = meta.map(m => NominalMetadataWrapper(
  m.getLong("idx"),m.getString("name"),m.getStringArray("vals")
))

最后一个小UDF:

import scala.util.Try

val transFeatures = udf((v: Vector) => lookup.map{
  m => Try(m.vals(v(m.idx.toInt).toInt)).toOption
})

transformed.select(transFeatures($"string_features")).

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读