加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > 安全 > 正文

scala – 如何编写简单地进行行收集的Spark UDAF?

发布时间:2020-12-16 18:09:22 所属栏目:安全 来源:网络整理
导读:根据我的具体要求,我想编写一个UDAF,它只收集所有输入行. 输入是两列行,Double Type; 中间模式,“我想”,是ArrayList(如果我错了,请纠正我) 返回的数据类型是ArrayList 我写了一篇关于我的UDAF的“想法”,但我希望有人帮助我完成它. class CollectorUDAF() e
根据我的具体要求,我想编写一个UDAF,它只收集所有输入行.

输入是两列行,Double Type;

中间模式,“我想”,是ArrayList(如果我错了,请纠正我)

返回的数据类型是ArrayList

我写了一篇关于我的UDAF的“想法”,但我希望有人帮助我完成它.

class CollectorUDAF() extends UserDefinedAggregateFunction {

  // Input Data Type Schema
  def inputSchema: StructType = StructType(Array(StructField("value",DoubleType),StructField("y",DoubleType)))

  // Intermediate Schema
  def bufferSchema = util.ArrayList[Array(StructField("value",DoubleType)]

  // Returned Data Type .
  def dataType: DataType = util.ArrayList[Array(StructField("value",DoubleType)]

  // Self-explaining
  def deterministic = true

  // This function is called whenever key changes
  def initialize(buffer: MutableAggregationBuffer) = {

  }

  // Iterate over each entry of a group
  def update(buffer: MutableAggregationBuffer,input: Row) = {


  }

  // Called after all the entries are exhausted.
  def evaluate(buffer: Row) = {

  }

  def merge(buffer1: MutableAggregationBuffer,buffer2: Row): Unit = {

  }

}

解决方法

如果我理解你的问题是正确的,那么以下是你的解决方案:

class CollectorUDAF() extends UserDefinedAggregateFunction {

  // Input Data Type Schema
  def inputSchema: StructType = new StructType().add("value",DataTypes.DoubleType).add("y",DataTypes.DoubleType)

  // Intermediate Schema
  val bufferFields : util.ArrayList[StructField] = new util.ArrayList[StructField]
  val bufferStructField : StructField = DataTypes.createStructField("array",DataTypes.createArrayType(DataTypes.StringType,true),true)
  bufferFields.add(bufferStructField)
  def bufferSchema: StructType = DataTypes.createStructType(bufferFields)

  // Returned Data Type .
  def dataType: DataType = DataTypes.createArrayType(DataTypes.DoubleType)

  // Self-explaining
  def deterministic = true

  // This function is called whenever key changes
  def initialize(buffer: MutableAggregationBuffer) = {
    buffer(0,new java.util.ArrayList[Double])
  }

  // Iterate over each entry of a group
  def update(buffer: MutableAggregationBuffer,input: Row) = {
    val DoubleList: util.ArrayList[Double]  = new util.ArrayList[Double](buffer.getList(0))
    DoubleList.add(input.getDouble(0))
    DoubleList.add(input.getDouble(1))
    buffer.update(0,DoubleList)
  }

  def merge(buffer1: MutableAggregationBuffer,buffer2: Row): Unit = {
    buffer1.update(0,buffer1.getList(0).toArray() ++ buffer2.getList(0).toArray())
  }
  // Called after all the entries are exhausted.
  def evaluate(buffer: Row) = {
    buffer.getList(0).toArray()
  }
}

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读