scala – Pipeline中Spark Dataframe中的OneHotEncoder
|
我一直试图用
adult dataset在Spark和Scala中运行一个例子.
使用Scala 2.11.8和Spark 1.6.1. 问题(目前)在于该数据集中的分类特征量,在Spark ML算法完成其工作之前,所有分类特征都需要编码为数字. 到目前为止我有这个: import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.OneHotEncoder
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf,SparkContext}
object Adult {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Adult example").setMaster("local[*]")
val sparkContext = new SparkContext(conf)
val sqlContext = new SQLContext(sparkContext)
val data = sqlContext.read
.format("com.databricks.spark.csv")
.option("header","true") // Use first line of all files as header
.option("inferSchema","true") // Automatically infer data types
.load("src/main/resources/adult.data")
val categoricals = data.dtypes filter (_._2 == "StringType")
val encoders = categoricals map (cat => new OneHotEncoder().setInputCol(cat._1).setOutputCol(cat._1 + "_encoded"))
val features = data.dtypes filterNot (_._1 == "label") map (tuple => if(tuple._2 == "StringType") tuple._1 + "_encoded" else tuple._1)
val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01)
val pipeline = new Pipeline()
.setStages(encoders ++ Array(lr))
val model = pipeline.fit(training)
}
}
但是,这不起作用.调用pipeline.fit仍然包含原始字符串功能,因此会抛出异常. 我选择遵循这个流程的原因是因为我在Python和Pandas中有广泛的背景,但我正在尝试学习Scala和Spark. 解决方法
如果你已经习惯了更高级别的框架,那么有一点可能会让人感到困惑.您必须先索引功能,然后才能使用编码器.正如在
the API docs中解释的那样:
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{StringIndexer,OneHotEncoder}
val df = Seq((1L,"foo"),(2L,"bar")).toDF("id","x")
val categoricals = df.dtypes.filter (_._2 == "StringType") map (_._1)
val indexers = categoricals.map (
c => new StringIndexer().setInputCol(c).setOutputCol(s"${c}_idx")
)
val encoders = categoricals.map (
c => new OneHotEncoder().setInputCol(s"${c}_idx").setOutputCol(s"${c}_enc")
)
val pipeline = new Pipeline().setStages(indexers ++ encoders)
val transformed = pipeline.fit(df).transform(df)
transformed.show
// +---+---+-----+-------------+
// | id| x|x_idx| x_enc|
// +---+---+-----+-------------+
// | 1|foo| 1.0| (1,[],[])|
// | 2|bar| 0.0|(1,[0],[1.0])|
// +---+---+-----+-------------+
如您所见,不需要从管道中删除字符串列.实际上,OneHotEncoder将接受带有NominalAttribute,BinaryAttribute或缺少类型属性的数字列. (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
