加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > 安全 > 正文

Linux权限控制的基本原理

发布时间:2020-12-15 05:06:52 所属栏目:安全 来源:网络整理
导读:《Linux权限控制的基本原理》要点: 本文介绍了Linux权限控制的基本原理,希望对您有用。如果有疑问,可以联系我们。 本文主要介绍 Linux 系统中,权限控制的基本原理. 安全模型 在 Linux 系统中,我们所有的操作实质都是在进行进程访问文件的操作.我们访问文

《Linux权限控制的基本原理》要点:
本文介绍了Linux权限控制的基本原理,希望对您有用。如果有疑问,可以联系我们。

Linux权限控制的基本原理

本文主要介绍 Linux 系统中,权限控制的基本原理.

安全模型

在 Linux 系统中,我们所有的操作实质都是在进行进程访问文件的操作.我们访问文件需要先取得相应的访问权限,而访问权限是通过 Linux 系统中的安全模型获得的.

对于 Linux 系统中的安全模型,我们需要知道下面两点:

  1. Linux 系统上最初的安全模型叫 DAC,全称是 Discretionary Access Control,翻译为自主访问控制.
  2. 后来又增加设计了一个新的安全模型叫 MAC,全称是 Mandatory Access Control,翻译为强制访问控制.

注意,MAC 和 DAC 不是互斥的,DAC 是最基本的安全模型,也是通常我们最常用到的访问控制机制是 Linux 必须具有的功能,而 MAC 是构建在 DAC 之上的加强安全机制,属于可选模块.访问前,Linux 系统通常都是先做 DAC 检查,如果没有通过则操作直接失败 ; 如果通过 DAC 检查并且系统支持 MAC 模块,再做 MAC 权限检查.

为区分两者,我们将支持 MAC 的 Linux 系统称作 SELinux,表示它是针对 Linux 的安全加强系统.

这里,我们将讲述 Linux 系统中的 DAC 安全模型.

DAC 安全模型

DAC 的核心内容是:在 Linux 中,进程理论上所拥有的权限与执行它的用户的权限相同.其中涉及的一切内容,都是围绕这个核心进行的.

用户和组 ID 信息控制

用户、组、口令信息

通过 /etc/passwd 和 /etc/group 保存用户和组信息,通过 /etc/shadow 保存密码口令及其变动信息,每行一条记录.

用户和组分别用 UID 和 GID 表示,一个用户可以同时属于多个组,默认每个用户必属于一个与之 UID 同值同名的 GID .

对于 /etc/passwd,每条记录字段分别为 用户名: 口令(在 /etc/shadow 加密保存):UID:GID(默认 UID): 描述注释: 主目录: 登录 shell(第一个运行的程序)

对于 /etc/group,每条记录字段分别为 组名:口令(一般不存在组口令):GID:组成员用户列表(逗号分割的用户 UID 列表)

对于 /etc/shadow,每条记录字段分别为: 登录名: 加密口令: 最后一次修改时间: 最小时间间隔: 最大时间间隔: 警告时间: 不活动时间:

举例

以下是对用户和组信息的举例. /etc/shadow 中的口令信息为加密存储,不举例.

Linux权限控制的基本原理

文件权限控制信息

文件类型

Linux 中的文件有如下类型:

  • 普通文件,又包括文本文件和二进制文件,可用 touch 创建;
  • 套接字文件,用于网络通讯,一般由应用程序在执行中间接创建;
  • 管道文件是有名管道,而非无名管道,可用 mkfifo 创建;
  • 字符文件和块文件均为设备文件,可用 mknod 创建;
  • 链接文件是软链接文件,而非硬链接文件,可用 ln 创建.

访问权限控制组

分为三组进行控制:

  • user 包含对文件属主设定的权限
  • group 包含对文件属组设定的权限
  • others 包含对其他者设定的权限

可设定的权限

下面给出常见(但非全部)的权限值,包括:

  • r 表示具有读权限.
  • w 表示具有写权限.
  • x 一般针对可执行文件 / 目录,表示具有执行 / 搜索权限.
  • s 一般针对可执行文件 / 目录,表示具有赋予文件属主权限的权限,只有 user 和 group 组可以设置该权限.
  • t 一般针对目录,设置粘滞位后,有权限的用户只能写、删除自己的文件,否则可写、删除目录所有文件.旧系统还表示可执行文件运行后将 text 拷贝到交换区提升速度.

举例

通过 ls -l 可以查看到其文件类型及权限,通过 chmod 修改权限.

举例来说,

Linux权限控制的基本原理

输出中,第 1 个字符表示文件类型,其中,普通文件 (-)、目录文件 (d)、套接字文件 (s),管道文件 (p),字符文件 (c),块文件 (b),链接文件 (l); 第 2 个字符开始的 -rwxr-xr-x 部分表示文件的权限位,共有 9 位.

对于文件 /usr/bin/qemu-i386,这个权限控制的含义是:

  1. 第 2~4 位的 rwx 表示该文件可被它的 owner (属主)以 r 或 w 或 x 的权限访问.
  2. 第 5~7 位的 r-x 表示该文件可被与该文件同一属组的用户以 r 或 x 的权限访问
  3. 第 8~10 位的 r-x 表示该文件可被其它未知用户以 r 或 x 的权限访问.

对于 test/,test2/,test3/ 设定的权限:

  1. r,w,x 权限对每一权限控制组的权限用一位 8 进制来表示; 例如: 755 表示 rwxr-xr-x .
  2. s,t 权限会替代 x 位置显示;设定 s,t 权限则需在对应的、用于控制 r,x 的 8 进制权限控制组前追加数字; s 权限用于属主属组控制,t 用于其它控制.
  3. 设定属主 s 需追加 4,设定属组 s 追加 2,设定其它者 t 权限追加 1 ; 例如前面对 test/ 设定 t,则用 1775,表示 rwxrwxr-t .

进程权限控制信息

进程权限

对于进程,有如下属性与文件访问权限相关:

  • effective user id : 进程访问文件权限相关的 UID (简写为 euid ).
  • effective group id : 进程访问文件权限相关的 GID (简写为 egid ).
  • real user id : 创建该进程的用户登录系统时的 UID (简写为 ruid ).
  • real group id : 创建该进程的用户登录系统时的 GID (简写为 rgid ).
  • saved set user id : 拷贝自 euid .
  • saved set group id : 拷贝自 egid .

举例

我们可以使用 ps 和 top 选择查看具有 euid 和 ruid 的进程.或者通过 top 来查看进程的 euid 和 ruid

通过 top 来查看的例子:

首先输入 top 得到类似如下

Linux权限控制的基本原理

这里通过 -d 选项延长 top 的刷新频率便于操作.此处可见,只有 USER 字段,表示相应进程的 effective user id.

打开 read user id 的显示选项:

a. 在 top 命令运行期间,输入 f,可以看见类似如下行:

b. 输入 c 即可打开 Real user name 的显示开关.

c. 最后 Return 回车回到 top 中,即可看到 real user id 的选项.此时输入`o`,可调整列次序.最终我们可看到包含`effective user id`和`real user id`的输出如下:

Linux权限控制的基本原理

进程访问文件的权限控制策略

规则

进程访问文件大致权限控制策略

对于进程访问文件而言,最重要的是 euid,所以其权限属性均以 euid 为 “中心”.

  • 进程的 euid 一般默认即为 其 ruid 值
  • 若可执行文件的可执行权限位为 s,进程对其调用 exec 后,其 euid 被设置为该可执行文件的 user id
  • 进程的 saved set user id 拷贝自 euid.
  • 当进程的 euid 与文件的 user id 匹配时,进程才具有文件 user 权限位所设定的权限
  • 组权限 egid 的控制规则类似.

通过 exec 执行文件修改权限属性

通过 exec 调用可执行文件之时:

  • 进程 ruid 值始终不变;
  • saved set-user ID 始终来自 euid ;
  • euid 值取决于文件的 set-user-ID 位是否被设置.

如下:

Linux权限控制的基本原理

通过 setuid(uid) 系统调用修改权限属性

通过 setuid(uid) 修改权限属性之时:

  • superuser 可顺利修改 ruid,euid,saved set-user ID ;
  • unprivileged user 只能在 uid 与 ruid 相等时修改 euid,其它无法修改.

举例

再举几个比较特别的例子:

设置了 set-user-id

Linux权限控制的基本原理

如前所述,这个输出的含义是,对于 /usr/bin/sudo 文件,

  • 第 1~3 位的 rws 表示该文件可被它的 owner(属主)以 r 或 w 或 s 的权限访问
  • 第 4~6 位的 r-x 表示该文件可被与该文件同一属组的用户以 r 或 x 的权限访问.
  • 第 7~9 位的 r-x 表示该文件可被其它未知用户以 r 或 x 的权限访问.

这样设置之后,对于 owner,具有读、写、执行权限,这一点没有什么不同.但是对于不属于 root 组的普通用户进程来说,却大不相同.

普通用户进程执行 sudo 命令时通过其 others 中的 x 获得执行权限,再通过 user 中的 s 使得普通用户进程临时具有了 sudo 可执行文件属主 ( root ) 的权限,即超级权限.

这也是为什么通过 sudo 命令就可以让普通用户执行许多管理员权限的命令的原因.

设置了 stick-bit

Linux权限控制的基本原理

这样设置之后,对于 /tmp 目录,任何人都具有读、写、执行权限,这一点没有什么不同.但是对于 others 部分设置了粘滞位 t,其功能却大不相同.

若目录没设置粘滞位,任何对目录有写权限者都则可删除其中任何文件和子目录,即使他不是相应文件的所有者,也没有读或写许可 ; 设置粘滞位后,用户就只能写或删除属于他的文件和子目录.

这也是为什么任何人都能向 /tmp 目录写文件、目录,却只能写和删除自己拥有的文件或目录的原因.

举一个 man 程序的应用片断,描述 set-user-id 和 saved set-user-id 的使用

man 程序可以用来显示在线帮助手册,man 程序可以被安装指定 set-user-ID 或者 set-group-ID 为一个指定的用户或者组.

man 程序可以读取或者覆盖某些位置的文件,这一般由一个配置文件 (通常是 /etc/man.config 或者 /etc/manpath.config ) 或者命令行选项来进行配置.

man 程序可能会执行一些其它的命令来处理包含显示的 man 手册页的文件.

为防止处理出错,man 会从两个特权之间进行切换:运行 man 命令的用户特权,以及 man 程序的拥有者的特权.

需要抓住的主线:当只执行 man 之时,进程特权就是 man 用户的特权,当通过 man 执行子进程(如通过 !bash 引出 shell 命令)时,用户切换为当前用户,执行完又切换回去.

过程如下:

  1. 假设 man 程序文件被用户 man 所拥有,并且已经被设置了它的 set-user-ID 位,当我们 exec 它的时候,我们有如下情况:
    – real user ID = 我们的用户 UID
    – effective user ID = man 用户 UID
    – saved set-user-ID = man 用户 UID
  2. man 程序会访问需要的配置文件和 man 手册页.这些文件由 man 用户所拥有,但是由于 effective user ID 是 man,文件的访问就被允许了.
  3. 在 man 为我们运行任何命令的时候,它会调用 setuid(getuid())) (getuid() 返回的是 real user id).
    因为我们不是 superuser 进程,这个变化只能改变 effective user ID. 我们会有如下情况:
    现在 man 进程运行的时候把我们得 UID 作为它的 effective user ID. 这也就是说,我们只能访问我们拥有自己权限的文件.也就是说,它能够代表我们安全地执行任何 filter.
    – real user ID = 我们的用户 UID(不会被改变)
    – effective user ID = 我们的用户 UID
    – saved set-user-ID = man 的用户 UID(不会被改变)
  4. 当 filter 做完了的时候,man 会调用 setuid(euid).
    这里,euid 是 man 用户的 UID.(这个 ID 是通过 man 调用 geteuid 来保存的) 这个调用是可以的,因为 setuid 的参数和 saved set-user-ID 是相等的.(这也就是为什么我们需要 saved set-user-ID). 这时候我们会有如下情况:
    – real user ID = 我们的用户 UID(不会被改变)
    – effective user ID = man 的 UID
    – saved set-user-ID = man 的用户 UID(不会被改变)
  5. 由于 effective user ID 是 man,现在 man 程序可以操作它自己的文件了.
    通过这样使用 saved set-user-ID,我们可以在进程开始和结束的时候通过程序文件的 set-user-ID 来使用额外的权限.然而,期间我们却是以我们自己的权限运行的.如果我们无法在最后切换回 saved set-user-ID,我们就可能会在我们运行的时候保留额外的权限.

下面我们来看看如果 man 启动一个 shell 的时候会发生什么:

  • 这里的 shell 是 man 使用 fork 和 exec 来启动的.
  • 因为这时 real user ID 和 effective user ID 都是我们的普通用户 UID(参见 step3),所以 shell 没有其它额外的权限.
  • 启动的 shell 无法访问 man 的 saved set-user-ID(man),因为 shell 的 saved set-user-ID 是由 exec 从 effective user ID 拷贝过来的.
  • 在执行 exec 的子进程 ( shell ) 中,所有的 user ID 都是我们的普通用户 ID.

实际上,我们描述 man 使用 setuid 函数的方法不是特别正确,因为程序可能会 set-user-ID 为 root . 这时候,setuid 会把所有三种 uid 都变成你设置的 id,但是我们只需要设置 effective user ID.

关于作者

吕凯,大连理工大学硕士,现为 TPV 资深主任工程师.关注软件开发、系统运维、内容管理、行动管理等领域,喜欢计数写作及分享.(文章来自公众号:高效运维开发)

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读