加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > Windows > 正文

图像处理 – 检测窗口的非最大抑制

发布时间:2020-12-14 03:51:36 所属栏目:Windows 来源:网络整理
导读:在对象检测文献中,通常使用分类器和滑动窗口方法来检测图像中对象的存在,该方法返回一组检测窗口,并且使用非最大抑制来解析检测重叠. 有人可以解释在这些检测窗口上执行非最大抑制的算法. 谢谢 解决方法 引自 http://www.di.ens.fr/willow/events/cvml2012/m
在对象检测文献中,通常使用分类器和滑动窗口方法来检测图像中对象的存在,该方法返回一组检测窗口,并且使用非最大抑制来解析检测重叠.

有人可以解释在这些检测窗口上执行非最大抑制的算法.

谢谢

解决方法

引自 http://www.di.ens.fr/willow/events/cvml2012/materials/practical-detection/

Scanning-window style classification of image patches typically results in multiple responses around the target object. A standard practice to deal with this is to remove any detector responses in the neighborhood of detections with the locally maximal confidence score (non-maxima suppression or NMS). NMS is usually applied to all detections in the image with confidence above a certain threshold. Try NMS face detection for different threshold values and in different images:

另外在这里http://www.ens-lyon.fr/LIP/Arenaire/ERVision/detection_exercise_solution.m你可以找到一个matlab程序来完成所有事情 – 检测窗口上的检测和NMS

在检测窗口上执行非最大抑制的代码是

%%%%%%%%%%%%%%% **************************************************************
%%%%%%%%%%%%%%% **************************************************************
%%%%%%%%%%%%%%% *                                                            *
%%%%%%%%%%%%%%% *                       EXERCISE 3:                          *
%%%%%%%%%%%%%%% *                                                            *
%%%%%%%%%%%%%%% *        Non-maxima suppression of multiple responses        *
%%%%%%%%%%%%%%% *                                                            *
%%%%%%%%%%%%%%% **************************************************************
%%%%%%%%%%%%%%% **************************************************************
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Scanning-window style classification of image patches typically
%%%%%%%%%%%%%%% results in many multiple responses around the target object.
%%%%%%%%%%%%%%% A standard practice to deal with this is to remove any detector
%%%%%%%%%%%%%%% responses in the neighborhood of detections with locally maximal
%%%%%%%%%%%%%%% confidence scores (non-maxima suppression or NMS). NMS is
%%%%%%%%%%%%%%% usually applied to all detections in the image with confidence
%%%%%%%%%%%%%%% above certain threshold.
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% TODO:
%%%%%%%%%%%%%%% 3.1 Try out different threshold values to pre-selected windows
%%%%%%%%%%%%%%%     passed to the NMS stage,see parameter 'confthresh' below.
%%%%%%%%%%%%%%% 3.2 Try out different threshold values for NMS detections,%%%%%%%%%%%%%%%     see parameter 'confthreshnms'
%%%%%%%%%%%%%%% 3.3 Try detection and with different thresholds for different
%%%%%%%%%%%%%%%     included images: 'img1.jpg','img2.jpg','img3.jpg','img4.jpg'
%%%%%%%%%%%%%%% 
confthresh=0;
indsel=find(conf>confthresh);
[nmsbbox,nmsconf]=prunebboxes(bbox(indsel,:),conf(indsel),0.2);


%%%%%%%%%%%%%%% display detections above threshold after non-max suppression
%%%%%%%%%%%%%%% 
confthreshnms=1;
clf,showimage(img)
indsel=find(nmsconf>confthreshnms);
showbbox(nmsbbox(indsel,[1 1 0],regexp(num2str(nmsconf(indsel)'),'d+.d+','match'));
title(sprintf('%d NMS detections above threshold %1.3f',size(nmsbbox,1),confthreshnms),'FontSize',14)
fprintf('press a key...'),pause,fprintf('n')

您可以在第一个链接中找到所有相关功能.

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读