加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > Linux > 正文

LRU cache

发布时间:2020-12-14 01:31:22 所属栏目:Linux 来源:网络整理
导读:LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。现在要设计一种数据结构有如下几种性质: 1. 每个节点为一对key,value的形式,可通过get key查找,通过put key,value 插入 2. 最大存储节点数为n 3. put操作时,如果已经存储了

  LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。现在要设计一种数据结构有如下几种性质:

1. 每个节点为一对key,value的形式,可通过get <key>查找,通过put <key,value> 插入

2. 最大存储节点数为n

3. put操作时,如果已经存储了n个节点,则要淘汰最近最少使用的那个节点

?

可能会有很多种解决方案,例如:

一、用一个双向链表来存储所有节点,get时,遍历整个链表,找到对应的节点,并且把该节点挪动到链表的第一个位置,因此,链接中越靠前的位置总是距离最后一次访问时间越短的节点,越靠后的位置总是距离最后一次访问时间约久的节点。所以put时,如果已达到最大存储节点数时,直接删除链表最后一个节点再插入即可。总结,优点:实现简单,put操作的时间复杂度为O(1) 缺点:get操作时间复杂度为O(n),不够优秀。

二、我们都知道哈希表这种数据结构查询的时间性能很好,但是在这里如果只用一个哈希表,虽然查询和插入操作都能优化到O(1),但是在删除,也就是查找最近最少使用的节点时,却不得不遍历整个哈希表。我们来做进一步优化,前面第一种方案删除和插入操作都是O(1)的,但是查询操作是O(n),如果能把这两种方案结合一下的话,三种操作不就都是O(1)时间复杂度了。怎么结合呢?

? ? 哈希表的value存储节点的指针,同时把所有的value连接成一个双向链表,查询操作时,通过哈希表直接找到这个节点的指针,同时,可以在O(1)时间将这个节点移动到链表头部,删除操作时,直接删除链表尾部那个节点,同时将这个节点从哈希表中删除。

C++实现(这里为了简化操作,直接用了STL的map代替哈希表)

class LRUCache {
public:
    struct Node {
        int key,value;
        Node *next,*pre;
    };
    map<int,Node*> cache;
    Node *head,*rear;
    int size;
    
    LRUCache(int capacity) {
        size = capacity;
        head = new Node();
        rear = new Node();
        head->pre = NULL;
        head->next = rear;
        rear->next = NULL;
        rear->pre = head;
    }

    int get(int key) {
        if(cache.find(key) == cache.end()) return -1;
        Node *tmp = cache[key];
        tmp->pre->next = tmp->next;
        tmp->next->pre = tmp->pre;

        head->next->pre = tmp;
        tmp->next = head->next;
        tmp->pre = head;
        head->next = tmp;
        return tmp->value;
    }

    void lru_delete() {
        if(cache.size() == 0) return;
        Node* tmp = rear->pre;
        rear->pre = tmp->pre;
        tmp->pre->next = rear;
        cache.erase(tmp->key);
        delete tmp;
    }

    void put(int key,int value) {
        // if the key exist,then just update the value
        if(cache.find(key) != cache.end()) {
            cache[key]->value = value;
            this->get(key);
            return;
        }

        if(cache.size() >= this->size) this->lru_delete();

        Node *tmp = new Node;
        tmp->key = key;
        tmp->value = value;
        tmp->pre = this->head;
        tmp->next = this->head->next;
        if(head->next != NULL) head->next->pre = tmp;
        this->head->next = tmp;
        cache.insert(pair<int,Node*>(key,tmp));
    }
};
View Code

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读