加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > Linux > 正文

[LeetCode 322] Coin Change

发布时间:2020-12-14 00:25:23 所属栏目:Linux 来源:网络整理
导读:You are given coins of different denominations and a total amount of money? amount . Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination

You are given coins of different denominations and a total amount of money?amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins,return?-1.

Example 1:
coins =?[1,2,5],amount =?11
return?3?(11 = 5 + 5 + 1)

Example 2:
coins =?[2],amount =?3
return?-1.

Note:
You may assume that you have an infinite number of each kind of coin.

?

BackPack VI and Combination Sum IV: ?Find all possible combinations that sum to a target value?

Coin Change: Find the combination that sums to a target value and uses the fewest number of elements

?

State: dp[i]: the fewest number of coins needed that sum to i

Function: dp[i] = Math.min(dp[i],dp[i - coins[j]] + 1),if i >= coins[j] && dp[i - coins[j]] < Integer.MAX_VALUE

i >= coins[j]: only consider picking a coin if its value is not greater than the target value i;

dp[i - coins[j]] < Integer.MAX_VALUE: if we did pick coins[j],then we must be able to find a combination that sums?

to i - coins[j];

Initialization: dp[0] = 0,dp[i] = Integer.MAX_VALUE,for i >= 1

Answer: dp[amount] or -1

?

 1 public class Solution {
 2     public int coinChange(int[] coins,int amount) {
 3         if(amount <= 0){
 4             return 0;
 5         }
 6         if(coins == null || coins.length == 0){
 7             return -1;
 8         }
 9         int[] dp = new int[amount + 1];
10         dp[0] = 0;
11         for(int i = 1; i <= amount; i++){
12             dp[i] = Integer.MAX_VALUE;
13         }
14         for(int i = 1; i <= amount; i++){
15             for(int j = 0; j < coins.length; j++){
16                 if(i >= coins[j] && dp[i - coins[j]] < Integer.MAX_VALUE){
17                     dp[i] = Math.min(dp[i],dp[i - coins[j]] + 1);
18                 }
19             }
20         }
21         if(dp[amount] < Integer.MAX_VALUE){
22             return dp[amount];
23         }
24         return -1;
25     }
26 }

?

?

Related Problems

BackPack VI

Combination Sum IV

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读