优化python代码,减少分配/释放时间
| 
                         
 我试图从某个网站解决编程挑战问题,我不想在这里提及. 
  
  
问题如下: 
 给出了整数N,S,M,初始板配置也是如此. 我很确定我的解决方案是正确的,可以通过归纳证明.我将电路板转换为图形(邻接列表),其中点之间的边缘使得有效的昆虫跳跃.然后它只需要迭代M次并更新路径计数. 我主要担心的是代码需要进行优化,以便它可以在多个测试用例上工作,而无需分配/解除分配太多次,这会减慢运行时间.如果有人能在算法本身内建议优化,那也很棒. 谢谢! import sys
#The board on which Jumping insect moves.
#The max size in any test case is 200 * 200
board = [['_']*200 for j in xrange(200)]
#Graph in the form of an adjancency list created from the board
G = [list() for i in xrange(200*200)]
def paths(N,S):
    '''Calculates the total number of paths insect takes
    The board size is N*N,Length of paths: M,Insect can jusp from square u to square v if ||u-v|| <=S
    Here ||u-v|| refers to the 1 norm'''
    # Totals paths are modulo 1000000007
    MOD = 1000000007
    # Clearing adjacency list for this testcase
    for i in xrange(N*N): del(G[i][:])
    s = -1 #Starting point s
    #Creating G adjacency list 
    # Point 'L' represents starting point
    # Point 'P' cannot be accessed by the insect
    for u in xrange(N*N):
        x1,y1 = u/N,u%N
        if board[x1][y1] == 'L': s = u
        elif board[x1][y1] == 'P': continue
        for j in xrange(S+1):
            for k in xrange(S+1-j):
                x2,y2 = x1+j,y1+k
                if x2 < N and y2 < N and not board[x2][y2] == 'P':
                    v = x2*N+y2
                    G[u].append(v)
                    if not u == v: G[v].append(u)
                if j > 0 and k > 0:
                    x2,y1-k
                    if x2 < N and y2 >= 0 and not board[x2][y2] == 'P':
                        v = x2*N+y2
                        G[u].append(v)
                        G[v].append(u)                
    # P stores path counts
    P = [[0 for i in xrange(N*N)] for j in xrange(2)]
    # Setting count for starting position to 1
    P[0][s] = 1
    # Using shifter to toggle between prev and curr paths
    shifter,prev,curr = 0,0
    # Calculating paths
    for i in xrange(M):
        prev,curr = shifter %2,(shifter+1)%2
        #Clearing Path counts on curr
        for i in xrange(N*N): P[curr][i] = 0 
        for u in xrange(N*N):
            if P[prev][u] == 0: continue
            for v in G[u]:
                P[curr][v] = (P[curr][v]+P[prev][u]) % MOD
        shifter = (shifter+1)%2
    return (sum(P[curr])%MOD)
#Number of testcases
num = int(sys.stdin.readline().split()[0])
results = []
# Reading in test cases
for i in xrange(num):
    N,S = [int(j) for j in sys.stdin.readline().split()]
    for j in xrange(N):
        board[j][:N] = list(sys.stdin.readline().split()[0])
    results.append(paths(N,S))
for result in results:
    print result
解决方法
 这是numpy有用的东西,尽管你可以通过使用数组和结构模块来管理这个特定的用例.
 
        (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!  | 
                  
