python – Tensorflow和cifar 10,测试单个图像
发布时间:2020-12-20 13:14:43 所属栏目:Python 来源:网络整理
导读:我试图用tensorflow的cifar-10预测单个图像的类. 我找到了这个代码,但它失败了这个错误: 分配要求两个张量的形状匹配. lhs shape = [18,384] rhs shape = [2304,384] 我理解这是因为批次的大小只有1.(使用expand_dims我创建一个假批次.) 但我不知道如何解决
我试图用tensorflow的cifar-10预测单个图像的类.
我找到了这个代码,但它失败了这个错误: 分配要求两个张量的形状匹配. lhs shape = [18,384] rhs shape = [2304,384] 但我不知道如何解决这个问题? 我到处搜索但没有解决方案.. from PIL import Image import tensorflow as tf from tensorflow.models.image.cifar10 import cifar10 width = 24 height = 24 categories = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck" ] filename = "path/to/jpg" # absolute path to input image im = Image.open(filename) im.save(filename,format='JPEG',subsampling=0,quality=100) input_img = tf.image.decode_jpeg(tf.read_file(filename),channels=3) tf_cast = tf.cast(input_img,tf.float32) float_image = tf.image.resize_image_with_crop_or_pad(tf_cast,height,width) images = tf.expand_dims(float_image,0) logits = cifar10.inference(images) _,top_k_pred = tf.nn.top_k(logits,k=5) init_op = tf.initialize_all_variables() with tf.Session() as sess: saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state('/tmp/cifar10_train') if ckpt and ckpt.model_checkpoint_path: print("ckpt.model_checkpoint_path ",ckpt.model_checkpoint_path) saver.restore(sess,ckpt.model_checkpoint_path) else: print('No checkpoint file found') exit(0) sess.run(init_op) _,top_indices = sess.run([_,top_k_pred]) for key,value in enumerate(top_indices[0]): print (categories[value] + "," + str(_[0][key])) 编辑 我尝试放置一个占位符,在第一个形状中使用None,但是我收到了这个错误: 现在我真的迷路了…… from PIL import Image import tensorflow as tf from tensorflow.models.image.cifar10 import cifar10 import itertools width = 24 height = 24 categories = [ "airplane","truck" ] filename = "toto.jpg" # absolute path to input image im = Image.open(filename) im.save(filename,quality=100) x = tf.placeholder(tf.float32,[None,24,3]) init_op = tf.initialize_all_variables() with tf.Session() as sess: # Restore variables from training checkpoint. input_img = tf.image.decode_jpeg(tf.read_file(filename),channels=3) tf_cast = tf.cast(input_img,tf.float32) float_image = tf.image.resize_image_with_crop_or_pad(tf_cast,width) images = tf.expand_dims(float_image,0) i = images.eval() print (i) sess.run(init_op,feed_dict={x: i}) logits = cifar10.inference(x) _,k=5) variable_averages = tf.train.ExponentialMovingAverage( cifar10.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) ckpt = tf.train.get_checkpoint_state('/tmp/cifar10_train') if ckpt and ckpt.model_checkpoint_path: print("ckpt.model_checkpoint_path ",ckpt.model_checkpoint_path) saver.restore(sess,ckpt.model_checkpoint_path) else: print('No checkpoint file found') exit(0) _,top_k_pred]) for key,value in enumerate(top_indices[0]): print (categories[value] + "," + str(_[0][key])) 解决方法
我认为这是因为tf.Variable或tf.get_variable获取的变量必须具有完整定义的形状.您可以检查代码并提供完整定义的形状.
(编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |