吴裕雄--天生自然 PYTHON数据分析:医疗数据分析
发布时间:2020-12-20 12:55:35 所属栏目:Python 来源:网络整理
导读:import numpy as np # linear algebra import pandas as pd # data processing,CSV file I/O (e.g. pd.read_csv) # plotly import chart_studio.plotly as py from plotly.offline import init_notebook_mode,iplotinit_notebook_mode(connected = True) imp
import numpy as np # linear algebra import pandas as pd # data processing,CSV file I/O (e.g. pd.read_csv) # plotly import chart_studio.plotly as py from plotly.offline import init_notebook_mode,iplot init_notebook_mode(connected=True) import plotly.graph_objs as go import seaborn as sns # word cloud library from wordcloud import WordCloud # matplotlib import matplotlib.pyplot as plt # Input data files are available in the "../input/" directory. # For example,running this (by clicking run or pressing Shift+Enter) will list the files in the input directory dataframe = pd.read_csv("F:kaggleDataSethealthcare-datatest_2v.csv") import chart_studio.plotly as py from plotly.graph_objs import * df_heart_disease = dataframe[dataframe.heart_disease== 1] labels = df_heart_disease.gender pie1_list=df_heart_disease.heart_disease df_hypertension= dataframe[dataframe.hypertension == 1] labels1 = df_hypertension.gender pie1_list1=df_hypertension.hypertension labels2 = dataframe.Residence_type pie1_list2 = dataframe.heart_disease labels3 = dataframe.work_type pie1_list3 = dataframe.heart_disease fig = { ‘data‘: [ { ‘labels‘: labels,‘values‘: pie1_list,‘type‘: ‘pie‘,‘name‘: ‘Heart Disease‘,‘marker‘: {‘colors‘: [‘rgb(56,75,126)‘,‘rgb(18,36,37)‘,‘rgb(34,53,101)‘,‘rgb(36,55,57)‘,‘rgb(6,4,4)‘]},‘domain‘: {‘x‘: [0,.48],‘y‘: [0,.49]},‘hoverinfo‘:‘label+percent+name‘,‘textinfo‘:‘none‘ },{ ‘labels‘: labels1,‘values‘: pie1_list1,‘marker‘: {‘colors‘: [‘rgb(177,127,38)‘,‘rgb(205,152,36)‘,‘rgb(99,79,‘rgb(129,180,179)‘,‘rgb(124,103,37)‘]},‘name‘: ‘Hypertension‘,‘domain‘: {‘x‘: [.52,1],‘textinfo‘:‘none‘ },{ ‘labels‘: labels2,‘values‘: pie1_list2,‘marker‘: {‘colors‘: [‘rgb(33,99)‘,‘rgb(79,129,102)‘,‘rgb(151,179,100)‘,‘rgb(175,49,35)‘,73,147)‘]},‘name‘: ‘Residence Type‘,‘y‘: [.51,1]},{ ‘labels‘: labels3,‘values‘: pie1_list3,‘marker‘: {‘colors‘: [‘rgb(146,123,21)‘,‘rgb(177,34)‘,‘rgb(206,206,40)‘,51,‘rgb(35,21)‘]},‘name‘:‘Work Type‘,‘textinfo‘:‘none‘ } ],‘layout‘: {‘title‘: ‘‘,‘showlegend‘: False} } iplot(fig) import chart_studio.plotly as py import plotly.graph_objs as go # Create random data with numpy import numpy as np df_250 = dataframe.iloc[:250,:] random_x = df_250.index random_y0 = df_250.avg_glucose_level random_y1 = df_250.bmi random_y2 = df_250.age # Create traces trace0 = go.Scatter( x = random_x,y = random_y0,mode = ‘markers‘,name = ‘Avg. Glucose Level‘ ) trace1 = go.Scatter( x = random_x,y = random_y1,mode = ‘lines+markers‘,name = ‘BMI‘ ) trace2 = go.Scatter( x = random_x,y = random_y2,mode = ‘lines‘,name = ‘Age‘ ) data = [trace0,trace1,trace2] iplot(data,filename=‘scatter-mode‘) import chart_studio.plotly as py import plotly.graph_objs as go df_heart_disease = dataframe[dataframe.heart_disease==1] labels = df_heart_disease.gender x = labels trace0 = go.Box( y=dataframe.age,x=x,name=‘Age‘,marker=dict( color=‘#3D9970‘ ) ) trace1 = go.Box( y=dataframe.avg_glucose_level,name=‘Avg. Glucose Level‘,marker=dict( color=‘#FF4136‘ ) ) trace2 = go.Box( y=dataframe.bmi,name=‘BMI‘,marker=dict( color=‘#FF851B‘ ) ) data = [trace0,trace2] layout = go.Layout( yaxis=dict( title=‘Attendants Who Has Heart Disease‘,zeroline=False ),boxmode=‘group‘ ) fig = go.Figure(data=data,layout=layout) iplot(fig) import chart_studio.plotly as py import plotly.graph_objs as go df_hypertension= dataframe[dataframe.hypertension == 1] labels1 = df_hypertension.gender x = labels1 trace0 = go.Box( y=dataframe.age,trace2] layout = go.Layout( yaxis=dict( title=‘Attendants Who Has Hypertension‘,layout=layout) iplot(fig) df_heart_disease_1 = dataframe.smoking_status [dataframe.heart_disease == 1 ] df_hypertension_1 = dataframe.smoking_status [dataframe.hypertension == 1 ] trace1 = go.Histogram( x=df_heart_disease_1,opacity=0.75,name = "Heart Disease",marker=dict(color=‘rgba(171,50,96,0.6)‘)) trace2 = go.Histogram( x=df_hypertension_1,name = "Hypertension",marker=dict(color=‘rgba(12,196,0.6)‘)) data = [trace1,trace2] layout = go.Layout(barmode=‘overlay‘,title=‘ Association Between Smoking,Heart Disease & Hypertension‘,xaxis=dict(title=‘Smoking Status‘),yaxis=dict( title=‘Attendants‘),) fig = go.Figure(data=data,layout=layout) iplot(fig) df_heart_disease_1 = dataframe.work_type [dataframe.heart_disease == 1 ] df_hypertension_1 = dataframe.work_type [dataframe.hypertension == 1 ] trace1 = go.Histogram( x=df_heart_disease_1,0.6)‘)) data = [trace1,title=‘ Association Between Work Type,xaxis=dict(title=‘‘),layout=layout) iplot(fig) (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |