加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

吴裕雄--天生自然 PYTHON数据分析:医疗数据分析

发布时间:2020-12-20 12:55:35 所属栏目:Python 来源:网络整理
导读:import numpy as np # linear algebra import pandas as pd # data processing,CSV file I/O (e.g. pd.read_csv) # plotly import chart_studio.plotly as py from plotly.offline import init_notebook_mode,iplotinit_notebook_mode(connected = True) imp

import numpy as np # linear algebra
import pandas as pd # data processing,CSV file I/O (e.g. pd.read_csv)

# plotly
import chart_studio.plotly as py
from plotly.offline import init_notebook_mode,iplot
init_notebook_mode(connected=True)
import plotly.graph_objs as go
import seaborn as sns
# word cloud library
from wordcloud import WordCloud

# matplotlib
import matplotlib.pyplot as plt
# Input data files are available in the "../input/" directory.
# For example,running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
dataframe = pd.read_csv("F:kaggleDataSethealthcare-datatest_2v.csv")
import chart_studio.plotly as py
from plotly.graph_objs import *

df_heart_disease = dataframe[dataframe.heart_disease== 1] 
labels = df_heart_disease.gender
pie1_list=df_heart_disease.heart_disease

df_hypertension= dataframe[dataframe.hypertension == 1] 
labels1 = df_hypertension.gender
pie1_list1=df_hypertension.hypertension


labels2 = dataframe.Residence_type
pie1_list2 = dataframe.heart_disease

labels3 = dataframe.work_type
pie1_list3 = dataframe.heart_disease



fig = {
    data: [
        {
            labels: labels,values: pie1_list,type: pie,name: Heart Disease,marker: {colors: [rgb(56,75,126),rgb(18,36,37),rgb(34,53,101),rgb(36,55,57),rgb(6,4,4)]},domain: {x: [0,.48],y: [0,.49]},hoverinfo:label+percent+name,textinfo:none
        },{
            labels: labels1,values: pie1_list1,marker: {colors: [rgb(177,127,38),rgb(205,152,36),rgb(99,79,rgb(129,180,179),rgb(124,103,37)]},name: Hypertension,domain: {x: [.52,1],textinfo:none

        },{
            labels: labels2,values: pie1_list2,marker: {colors: [rgb(33,99),rgb(79,129,102),rgb(151,179,100),rgb(175,49,35),73,147)]},name: Residence Type,y: [.51,1]},{
            labels: labels3,values: pie1_list3,marker: {colors: [rgb(146,123,21),rgb(177,34),rgb(206,206,40),51,rgb(35,21)]},name:Work Type,textinfo:none
        }
        
    ],layout: {title: ‘‘,showlegend: False}
}

iplot(fig)

import chart_studio.plotly as py
import plotly.graph_objs as go

# Create random data with numpy
import numpy as np

df_250 = dataframe.iloc[:250,:]


random_x = df_250.index
random_y0 =  df_250.avg_glucose_level
random_y1 =  df_250.bmi
random_y2 =  df_250.age

# Create traces
trace0 = go.Scatter(
    x = random_x,y = random_y0,mode = markers,name = Avg. Glucose Level
)
trace1 = go.Scatter(
    x = random_x,y = random_y1,mode = lines+markers,name = BMI
)
trace2 = go.Scatter(
    x = random_x,y = random_y2,mode = lines,name = Age
)

data = [trace0,trace1,trace2]
iplot(data,filename=scatter-mode)

import chart_studio.plotly as py
import plotly.graph_objs as go
df_heart_disease = dataframe[dataframe.heart_disease==1] 
labels = df_heart_disease.gender
x = labels

trace0 = go.Box(
    y=dataframe.age,x=x,name=Age,marker=dict(
        color=#3D9970
    )
)
trace1 = go.Box(
    y=dataframe.avg_glucose_level,name=Avg. Glucose Level,marker=dict(
        color=#FF4136
    )
)
trace2 = go.Box(
    y=dataframe.bmi,name=BMI,marker=dict(
        color=#FF851B
    )
)
data = [trace0,trace2]
layout = go.Layout(
    yaxis=dict(
        title=Attendants Who Has Heart Disease,zeroline=False
    ),boxmode=group
)
fig = go.Figure(data=data,layout=layout)
iplot(fig)

import chart_studio.plotly as py
import plotly.graph_objs as go
df_hypertension= dataframe[dataframe.hypertension == 1] 
labels1 = df_hypertension.gender
x = labels1

trace0 = go.Box(
    y=dataframe.age,trace2]
layout = go.Layout(
    yaxis=dict(
        title=Attendants Who Has Hypertension,layout=layout)
iplot(fig)

df_heart_disease_1 = dataframe.smoking_status [dataframe.heart_disease == 1  ]        
df_hypertension_1  = dataframe.smoking_status [dataframe.hypertension  == 1   ]       
trace1 = go.Histogram(
    x=df_heart_disease_1,opacity=0.75,name = "Heart Disease",marker=dict(color=rgba(171,50,96,0.6)))
trace2 = go.Histogram(
    x=df_hypertension_1,name = "Hypertension",marker=dict(color=rgba(12,196,0.6)))



data = [trace1,trace2]
layout = go.Layout(barmode=overlay,title= Association Between Smoking,Heart Disease & Hypertension,xaxis=dict(title=Smoking Status),yaxis=dict( title=Attendants),)
fig = go.Figure(data=data,layout=layout)
iplot(fig)

df_heart_disease_1 = dataframe.work_type [dataframe.heart_disease    == 1  ]        
df_hypertension_1 = dataframe.work_type [dataframe.hypertension    == 1   ]     

trace1 = go.Histogram(
    x=df_heart_disease_1,0.6)))

data = [trace1,title= Association Between Work Type,xaxis=dict(title=‘‘),layout=layout)
iplot(fig)

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读