加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

Python创建一个空的稀疏矩阵

发布时间:2020-12-20 12:02:20 所属栏目:Python 来源:网络整理
导读:我试图将一些真实数据解析为一个.mat对象,以便在我的 matlab脚本中加载. 我收到此错误: TypeError: ‘coo_matrix’ object does not support item assignment 我找到了coo_matrix.但是,我无法为其分配值. data.txt中 10 4511 12 4 1 我想得到一个大小为100
我试图将一些真实数据解析为一个.mat对象,以便在我的 matlab脚本中加载.

我收到此错误:

TypeError: ‘coo_matrix’ object does not support item assignment

我找到了coo_matrix.但是,我无法为其分配值.

data.txt中

10 45
11 12 
4 1

我想得到一个大小为100×100的稀疏矩阵.并指定1

Mat(10,45) = 1
Mat(11,12) = 1
Mat(4,1) = 1

import numpy as np
from scipy.sparse import coo_matrix

def pdata(pathToFile):
    M = coo_matrix(100,100)
    with open(pathToFile) as f:
        for line in f:
            s = line.split()
            x,y = [int(v) for v in s]
            M[x,y] = 1     
    return M

if __name__ == "__main__":
    M = pdata('small.txt')

有什么建议吗?

解决方法

使用coo_matrix构造此矩阵,使用(data,(rows,cols))`参数格式:

In [2]: from scipy import sparse
In [3]: from scipy import io
In [4]: data=np.array([[10,45],[11,12],[4,1]])
In [5]: data
Out[5]: 
array([[10,[ 4,1]])
In [6]: rows = data[:,0]
In [7]: cols = data[:,1]
In [8]: data = np.ones(rows.shape,dtype=int)
In [9]: M = sparse.coo_matrix((data,cols)),shape=(100,100))
In [10]: M
Out[10]: 
<100x100 sparse matrix of type '<class 'numpy.int32'>'
    with 3 stored elements in COOrdinate format>
In [11]: print(M)
  (10,45)  1
  (11,12)  1
  (4,1)    1

如果将其保存为.mat文件以便在MATLAB中使用,它将以csc格式保存(已将其从库中转换):

In [13]: io.savemat('test.mat',{'M':M})
In [14]: d = io.loadmat('test.mat')
In [15]: d
Out[15]: 
{'M': <100x100 sparse matrix of type '<class 'numpy.int32'>'
    with 3 stored elements in Compressed Sparse Column format>,'__globals__': [],'__header__': b'MATLAB 5.0 MAT-file Platform: posix,Created on: Mon Aug  7 08:45:12 2017','__version__': '1.0'}

coo格式不实现项目分配. csr和csc确实实现了它,但会抱怨.但它们是计算的常规格式. lil和dok是迭代赋值的最佳格式.

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读