加入收藏 | 设为首页 | 会员中心 | 我要投稿 李大同 (https://www.lidatong.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python – Pandas分层索引和计算

发布时间:2020-12-20 11:04:34 所属栏目:Python 来源:网络整理
导读:鉴于: df = pd.DataFrame({"panum": ["PA1","PA1","PA2","PA2"],"which": ["A","A","B","B"],"score": [88,80,90,92,95,99]})df.set_index(['panum','which'],inplace=True)df scorepanum which PA1 A 88 A 80 A 90PA2 B 92 B 95 B 99 是否有可能写出一些会
鉴于:

df = pd.DataFrame({"panum": ["PA1","PA1","PA2","PA2"],"which": ["A","A","B","B"],"score": [88,80,90,92,95,99]})

df.set_index(['panum','which'],inplace=True)
df

             score
panum which       
PA1   A         88
      A         80
      A         90
PA2   B         92
      B         95
      B         99

是否有可能写出一些会在’哪个’中创建一个新的索引条目,这个参数最大但是对于这个级别,所以它会创建两个新行,PA1,Max和PA2,Max?

更新

我已经纠正了索引.上面的例子不是我的意思.

panmum  factor  score
PA1     init    90
        resub   94
        final   93
PA2     init    60
        resub   90
        final   88

我在这个更好的场景中的问题是:“我想创建一个名为mean的新”panum“,它将有三行,(mean,init),resub),final)”.

伪代码就像df [‘mean’] =(df [‘pa1’] df [‘pa2’])/ 2

我知道这是一个不同的问题!

解决方法

您可以创建最大值的新DataFrame,添加第二级最大值,append到原始值和最后 sort_index

m = df.max(level=0).assign(max='max').set_index('max',append=True)
print (m)
           score
panum max       
PA1   max     90
PA2   max     99

df = df.append(m).sort_index()
print (df)
             score
panum which       
PA1   A         88
      A         80
      A         90
      max       90
PA2   B         92
      B         95
      B         99
      max       99

编辑答案:解决方案的平均值由第二级和swaplevel更改为正确对齐到最终的DataFrame:

df = pd.DataFrame({"panum": ["PA1","factor": ["init","resub","final"] * 2,"score": [90,94,93,60,88]})

df.set_index(['panum','factor'],inplace=True)
print (df)
              score
panum factor       
PA1   init       90
      resub      94
      final      93
PA2   init       60
      resub      90
      final      88
m = (df.mean(level=1)
        .assign(factor='mean')
        .set_index('factor',append=True)
        .swaplevel(0,1))
print (m)
               score
factor factor       
mean   init     75.0
       resub    92.0
       final    90.5

df = df.append(m)
print (df)
              score
panum factor       
PA1   init     90.0
      resub    94.0
      final    93.0
PA2   init     60.0
      resub    90.0
      final    88.0
mean  init     75.0
      resub    92.0
      final    90.5

(编辑:李大同)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读